Project

SHD Development at Cooldown Commons Phase 3

Report Title

Ground Investigation Report October 2020

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

The Quarter Citywest Cooldown Commons Phase 3

DBFL

Ground Investigation Report

October 2020

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	The Quarter Citywest Cooldown Commons Phase 3
Engineer	DBFL
Client	Cairn Homes
Project No	9766-07-20
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Final	M Sheehan	D MagLochlainn	C Finnerty	Dublin	13 November 2020

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble	1
2.0	Overview	1
2.1.	Background	1
2.2.	Purpose and Scope	1
3.0	Subsurface Exploration	1
3.1.	General	1
3.2.	Trial Pits	2
3.3.	Soakaway Testing	2
3.4.	Window Sampling	2
3.5.	Dynamic Probing	2
3.6.	Insitu Plate Bearing Test	3
3.7.	Cable Percussion Boreholes	3
3.8.	Rotary Boreholes	3
3.9.	Surveying	4
3.10.	Groundwater Monitoring Installations	4
3.11.	Laboratory Testing	4
4.0	Ground Conditions	5
4.1.	General	5
4.2.	Insitu Strength Testing	6
4.3.	Groundwater	6
4.4.	Laboratory Testing	6
4.4.1.	Geotechnical Laboratory Testing	6
4.4.2.	Chemical Laboratory Testing	6
4.4.3.	Environmental Laboratory Testing	7
5.0	Recommendations & Conclusions	8
5.1.	General	8
5.2.	Foundations	8
5.3.	Excavations	10
5.4.	Soakaway Design	10

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

APPENDICES

Appendix 1 Site Location Plan
Appendix 2 Trial Pit Records
Appendix 3 Soakaway Results

Appendix 4 Window Sample Records

Appendix 5 Dynamic Probes

Appendix 6 Plate Bearing Test Results

Appendix 7 Borehole Records
Appendix 8 Laboratory Results

Appendix 9 Groundwater Monitoring

1.0 Preamble

On the instructions of DBFL Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between July and October 2020 at the site of the proposed Residential development. The Quarter Citywest Cooldown Commons Phase 3, Dublin 24.

2.0 Overview

2.1. Background

It is proposed to construct a High Rise Residential Apartments and Housing development with associated services, access roads and car parking at the proposed site. The site is currently occupied by an active construction site and is situated on Citywest Avenue off the N82 Citywest Cooldown Commons Dublin. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant and a basement.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 9 No. Trial Pits to a maximum depth of 3.60m BGL
- Carry out 2 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out 18 No. Window Sample Boreholes to recover soil samples
- Carry out 11 No. Dynamic Probes to determine soil strength/density characteristics
- Carry out 17 No. Cable Percussion boreholes to a maximum depth of 10.00m BGL
- Carry out 15 No. Rotary Core Boreholes to a maximum depth of 15m BGL
- Installation of 5 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 3.5 Tonne excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Window Sampling

The window sampling was carried out at the locations shown in the location plan in Appendix 1 using a Tecopsa SPT Tec 10 percussion drilling rig. The window sampling consists of a 1m long steel tube with a cutting edge and an internal plastic liner which is mechanically driven into the ground utilising a 50kg weight falling a height of 500mm. Upon completion of the 1m sample, the tube is withdrawn and the plastic liner removed and sealed for logging and sub sampling by a Geotechnical Engineer/Engineering Geologist. The tube is replaced in the borehole and a subsequent 1m sample can be recovered. Occasionally outer casing or a reduced diameter tube is utilised to enable the window sample to progress in difficult drilling conditions. Geotechnical or environmental soil samples can be recovered from each of the liners following logging. The window sample records are provided in Appendix 4 of this Report.

3.5. Dynamic Probing

The dynamic probe tests (DPH) were carried out at the locations shown in the location plan in Appendix 1 in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 50kg weight in 100mm intervals and monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated by dividing the total number of blows over a 300mm drive length by 1.5. The dynamic probe logs are provided in Appendix 5 of this Report.

3.6. Insitu Plate Bearing Test

The plate bearing tests were carried out using a 305mm or 450mm diameter plate at the locations shown on the site plan in Appendix 1. The plate was loaded in increments using a hydraulic jack and an excavator to provide a reaction and the displacement was monitored in accordance with BS1377 Part 9 using independently mounted digital strain gauges. The constrained modulus and equivalent CBR are calculated in accordance with HD29/75 and are provided on the test reports in Appendix 6 of this Report.

3.7. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 7 of this Report.

3.8. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or

liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 7 of this Report.

3.9. Surveying

The exploratory hole locations have been recorded using a Trimble R10 GNSS System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.10. Groundwater Monitoring Installations

Groundwater and or Gas Monitoring Installation were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.11. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite, pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer tests were carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 8 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site and are generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Granular Deposits

TOPSOIL: Topsoil was encountered in exploration holes to the south and southeast of the site and was present to a maximum depth of 0.3m BGL. The majority of other exploratory holes encountered made ground from or cohesive deposits from ground level.

MADE GROUND: Made Ground deposits were encountered from ground level in several exploratory holes and were present to a relatively consistent depth of between 0.2m and 0.60m BGL. These deposits were described generally as *brown slightly sandy slightly gravelly CLAY* or *Dark grey slightly clayey sandy fine* to coarse angular to subangular Crushed Rock Fill with occasional cobbles and boulders and contained occasional fragments of concrete, metal, red brick, glass and plastic.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown mottled grey sandy slightly gravelly CLAY* and *brown sandy slightly gravelly CLAY with occasional cobbles and boulders.* These upper brown cohesive deposits vary in composition across the site and contain granular lenses of sand and gravel. Groundwater strikes are noted on the exploratory hole logs.

These deposits overlay a *stiff dark grey slightly sandy slightly gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff or stiff below 2.00m BGL in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

GRANULAR DEPOSITS: The granular deposits were encountered within the cohesive deposits and were typically described as Dark grey or brown clayey slightly silty gravelly SAND or Brown clayey sandy subangular to subrounded fine to coarse GRAVEL. The secondary sand/gravel and silt/clay constituents

varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs.

Based on the SPT N values the deposits are typically medium dense and become dense with depth. It should be noted that many of the trial pits where granular deposits or groundwater were encountered, experienced instability. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs. A significant groundwater strike was noted in the boreholes on encountering the granular deposits and the driller noted blowing sands or gravels during drilling.

4.2. Insitu Strength Testing

The correlated DPH blow counts indicate that the overburden deposits are soft or soft to firm to depth of 1.0m to 1.2m BGL and become firm or firm to stiff with depth. DPH04 had low blow counts in the soft to firm cohesive deposits to a depth of 2.10m BGL which corresponds to the description on trial pit TP05.

4.3. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH01, BH02, BH08, BH10 and BH17 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 9 of this Report.

4.4. Laboratory Testing

4.4.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 45.2% and 79.2% generally with fines contents of 6% to 23.2%.

The Particle Size Distribution tests confirm that generally the granular deposits are gap graded with percentages of sands/gravels and silt/clay typically between 3% and 7.5% with a gravel/sand content of typically 10.3% to 79.2%.

4.4.2. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.4.3. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. The waste classification report is included under the cover of a sperate report by Ground Investigations Ireland.

The results from the completed laboratory testing is included in Appendix 8 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

The allowable bearing capacity recommendations are separated into three separate sections. The housing estate to the northeast of the site and the Apartment complexes with basements at the west and south of the site. Recommended allowable bearing capacities for each area are out lined in the tables below.

		Allov	vable Bea	ring Capa	cities (ABC	c) kN/m2			
Block	Dynamic Probe	ABC	Depth	Depth	Comment	ABC	Depth	Depth	Comment
Bioek	No.	kN/m2	m BGL	m OD		kN/m2	m BGL	m OD	
	DPH01	70	1.20	109.97	Cohesive	100	2.10	109.07	Granular
	DPH02	70	1.10	110.07	Cohesive	100	2.00	109.17	cohesive
	DPH03	70	1.40	110.03	cohesive	100	2.40	109.03	Granular
	DPH04	100	2.40	109.92	cohesive	-			
	DPH05	70	1.00	110.87	cohesive	100	2.00	109.87	cohesive
Housing Block	DPH06	100	0.70	111.10	Cohesive				
BIOCK	DPH07	70	0.70	110.95	Cohesive	125	1.80	109.85	cohesive
	DPH08	70	1.00	110.37	Cohesive	125	2.00	109.37	cohesive
	DPH09	70	0.50	110.50	Cohesive	100	1.40	109.60	cohesive
	DPH10	100	0.80	110.20	Cohesive				
	DPH11	100	1.00	110.08	Cohesive	125	1.50	109.58	cohesive

An allowable bearing capacity of 70 kN/m^2 is recommended for conventional strip or pad foundations on the firm cohesive deposits between 0.50 m and 1.20 m BGL for the housing estate area.

Where the cohesive deposits are deeper, such as at the location of DPH04 and DPH03, lean mix trench fill to a depth of 2.40m and 1.40m BGL is recommended to achieve the recommended allowable bearing capacity.

The possibility for variation in the depth of the made ground in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

In any part of the site, should part of the foundation be on granular material we would recommend that all the foundations of the unit in question be lowered to the competent stratum to avoid differential settlement.

A ground bearing floor slab is recommended to be based on the firm to stiff cohesive deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014 +A1:2016 and/or NRA SRW CL808 Type E granular stone fill. Where the depth of Made Ground/Soft deposits exceeds 0.9m then suspended floor slabs should be considered.

		Allowa	able Beari	ing Capac	ities (ABC)	kN/m2			
Block	Dynamic Probe	ABC	Depth	Depth	Comment	ABC	Depth	Depth	Comment
DIOCK	No.	kN/m2	m BGL	m OD		kN/m2	m BGL	m OD	
	BH01	80	2.00	109.81	cohesive	250	4.00	-4.00	Cohesive
Apartment	BH02	160	2.00	110.06	cohesive	250	4.00	-4.00	cohesive
Block	BH03	120	2.00	110.45	cohesive	250	4.00	-4.00	cohesive
South	BH04	100	2.00	111.07	cohesive	250	4.00	-4.00	cohesive
	BH05	45	2.00	111.29	cohesive	250	4.00	-4.00	cohesive
	BH06	40	3.00	112.93	Cohesive	250	5.00	-5.00	cohesive
	BH07	80	3.00	113.04	cohesive	150	6.00	-6.00	cohesive
	BH08	125	3.00	113.81	cohesive	250	5.00	-5.00	cohesive
	BH09	250	3.00	111.35	cohesive				
	BH10	250	3.00	111.29	cohesive				
Apartment	BH11	250	3.00	110.26	cohesive				
Block	BH12	250	3.00	109.79	cohesive				
West	BH13	250	3.00	109.85	cohesive				
	BH14	250	3.00	109.71	cohesive				
	BH15	250	3.00	109.53	cohesive				
	BH16	250	3.00	109.00	cohesive				
	BH17	250	3.00	109.00	cohesive				

Due to the presence of soft and compressible Cohesive deposits beneath the footprint of the proposed structure//high loading anticipated for the Apartment Blocks piled foundations may be more economically advantageous for the proposed building. The type, size and depth of the pile foundations should be confirmed by a specialist piling contractor based on the loading from the proposed building. The floor slab is recommended be suspended and also supported on the building piles.

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.3. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Excavations in the Made Ground, or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

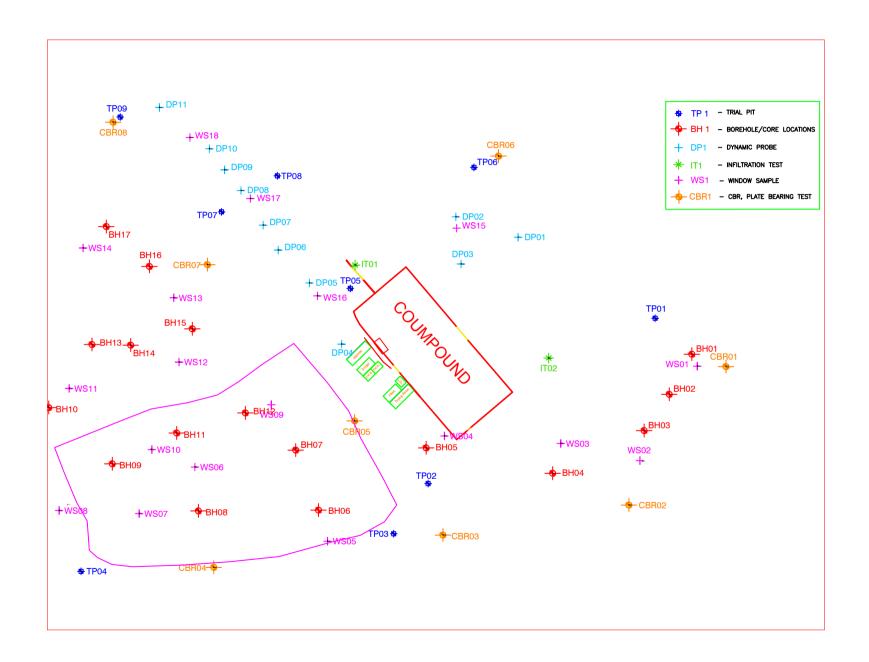
Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and are likely to require dewatering due to the groundwater seepages noted in the exploratory hole logs in the Appendices of this Report.

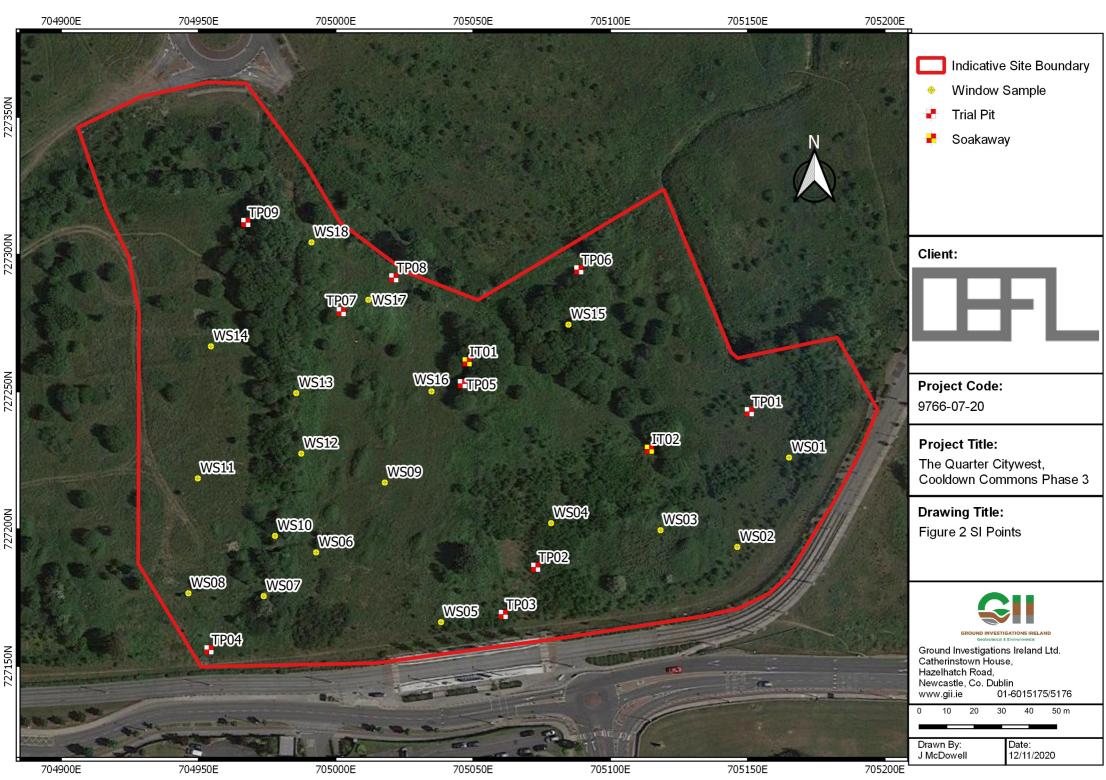
The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations. Generally, where significant excavations are required in water bearing granular deposits a cut-off wall may be more cost effective than extensive dewatering. An assessment by a specialist dewatering contractor is recommended to determine the most cost effective approach to the proposed excavation.

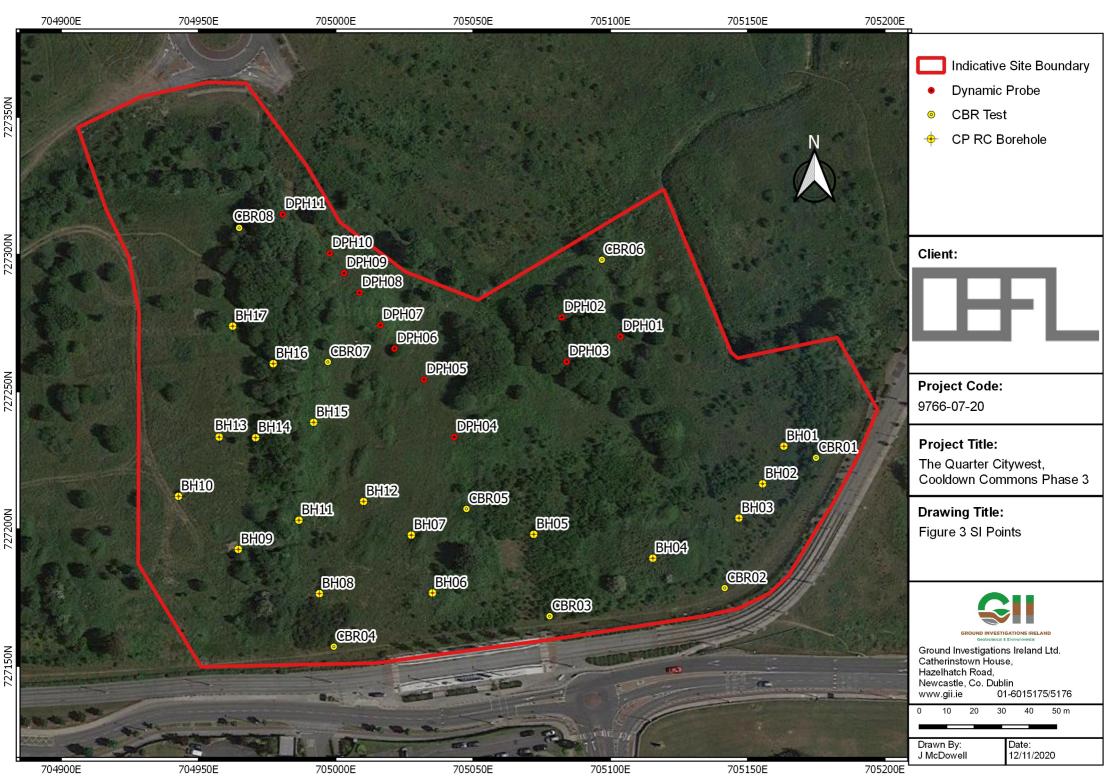
5.4. External Pavements

The proposed pavements are recommended to be designed in accordance with the CBR test results included in the Appendixes of this Report. The low CBR test results indicate that a capping layer or a sufficient depth of crushed stone fill may be required. Plate bearing tests are recommended at the time of construction to verify the design assumptions for the proposed pavement make up and to verify adequate compaction has been achieved.

The use of a geogrid and separation membrane may improve the performance of the proposed pavement and enable a more economical pavement design to be achieved, a specialist supplier is recommended to advise of the required strength, depth and type of geotextile for the proposed design.


5.5. Soakaway Design


At the locations of IT01 and IT02 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.


The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Trial Pit Records

	Grou	ınd Inv	estigations Ire www.gii.ie	land	Ltd	Site The Quarter at Citywest, C	Cooldown Commons Phase		Trial Pit Numbei IT01	r
Machine: 8	Tonne Tracked Excavator	Dimension 1.80m x			Level (mOD) 111.65	Client DBFL		ı	Job Number 766-07-2	
		Location 705	(dGPS) 047.7 E 727260.6 N	Dates 30	0/07/2020	Engineer		•	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Le	egend	Water
Plan				111.25 111.00	(0.25) - (0.65) - (0.85) - (0.85)	Soft to firm brown slightly: Gravel is subangular to su	sandy slightly gravelly CLAY. brounded fine to coarse. grey sandy gravelly CLAY w unded cobbles. Gravel is			
						No groundwater encountere Side walls stable. Trial pit backfilled on comple				
						mai pit backillied on comple	Suoi I			
						Scale (approx)	Logged By	Figure N	No.	
						1:25	MS	9766-07	7-20.IT0	1

	Grou	ınd In	vestigations I www.gii.ie	reland	Ltd	Site The Quarter at Citywest, C	Cooldown Commons Phase 3	Trial Num	
Machine: 8 E Method: T	Tonne Tracked Excavator Trial Pit	Dimens 1.50m		D)	Level (mOD) 112.09	Client DBFL		Job Num 9766-	nber
			n (dGPS) 5114.1 E 727228.8 N	Dates 30	0/07/2020	Engineer		Shee	et /1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leger	Mater Don
				111.59		subrounded cobbles and (clayey sandy subangular to Gravel with some subangul geotextiles. sandy slightly gravelly CLAY. brounded fine to coarse.		·:·
			Water strike(1) at 1.20m.	111.29	- (0.30) - 0.80 (0.70)		indy gravelly slightly silty CL ounded cobbles. Gravel is	*	×° × V1
				110.59	1.50	Complete at 1.50m			4 × × 0
Plan .						Remarks Groundwater encountered a	at 1 20m BGL (madium seen	ade)	
						Side walls stable. Trial pit backfilled on comple		-	
						Scale (approx) 1:25	Logged By	Figure No. 9766-07-20.	

	Grou	nd In	vestigation www.gii.ie		and l	Ltd	Site The Quarter at Citywest, C	Cooldown Commons Phase	3	Trial Pit Number TP01	•
	Tonne Tracked Excavator Trial Pit	Dimens 2.70m	ions < 0.70m x 3.00m (L x	W x D)		Level (mOD) 111.63	Client DBFL		!	Job Number 9766-07-2	
			n (dGPS) 5150.6 E 727242.4 N	I	Dates 29	/07/2020	Engineer			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ds	Level (mOD)	Depth (m) (Thickness)	D	escription		Legend	Water
0.50 1.00 2.00 Plan	B B C C C C C C C C C C C C C C C C C C		Water strike(1) at 1.4	80m.	111.43 110.88 108.93 108.63		Clay with rootlets and plas subangular to rounded fine Soft to firm brown sandy s subangular to rounded fine Firm brown mottled grey s with occasional subangular subrounded to rounded be Gravel is subangular to rounded is subangular to rounded subangular to rounded fine subangular to rounded fine subangular to rounded fine subangular to rounded fine	andy gravelly slightly silty Clar to rounded cobbles, some suiders and grey sand lense unded fine to coarse. Stylia silty gravelly fine to medium sounded cobbles. Gravel is a to coarse. Stylia silty gravelly silty CLAN. Gravel is subangular to	LAY s.		771
						5	Scale (approx) 1:25	Logged By MS	Figure 9766-0	No. 7-20.TP0	1

	Grou	ınd In	vestigations l www.gii.ie	reland	Ltd	Site The Quarter at Citywest, C	The Quarter at Citywest, Cooldown Commons Phase 3			
Machine: 8 E	Tonne Tracked excavator	Dimens 2.80m	ions c 0.70m x 3.00m (Lx W x I	D)	Level (mOD) 113.42	Client DBFL		Job Number 9766-07-20		
			n (dGPS) 5072.8 E 727185.8 N	Dates 29	9/07/2020	Engineer		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Variet		
					(0.60)	medium Sand with large c	slightly clayey gravelly fine to oncrete slabs, plastic, metal angular to subangular fine to	bars XXXXXX		
0.60	В			112.82	(0.30)	Firm brown slightly sandy some subangular cobbles subrounded fine to coarse	slightly gravelly silty CLAY w Gravel is subangular to	ith × 2 · · · · · · · · · · · · · · · · · ·		
1.00	В			112.52	0.90	Soft to firm brown slightly swith some subangular cob subrounded fine to coarse	sandy slightly gravelly silty C bles. Gravel is subangular to	LAY × 0 · · · · · · · · · · · · · · · · · ·		
				111.62	(0.90)	Soft to firm brown slightly:	sandy gravelly silty CLAY wit	x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
2.00	В				- - - - - - - - - - - - - - - - - - -	some subangular to subro boulders. Gravel is subang	unded cobbles and subroun yular to rounded fine to coar	ded Us O		
2.90	В			110.62 110.42	(0.20)	Stiff dark grey slightly sand Gravel is subangular to su Complete at 3.00m	dy slightly gravelly silty CLAN brounded fine to coarse.			
Plan .						Remarks No groundwater encountere	d			
						Side walls stable. Trial pit backfilled on comple				
						Scale (approx)	Logged By	Figure No.		
						1:25	MS	9766-07-20.TP02		

	Grou	nd In	vestic ww	gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, C	Cooldown Commons Phase	Trial Pit Number TP03	
	Tonne Tracked excavator	Dimens 2.90m	ions	3.00m (L x W x D)		Level (mOD) 113.89	Client DBFL		Job Number 9766-07-20	_ o
			n (dGPS) 5060.9 E 7	27168.6 N	Dates 30)/07/2020	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Fie	eld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend by	
0.50 B 1.00 B		Water strike(1) at 1.60m.			113.24 112.99 111.99		MADE GROUND: Brown soccasional subrounded cofragments. Gravel is subal coarse. Soft to firm brown mottled gravelly slightly sitty CLAY rounded cobbles. Gravel is coarse. Firm brown mottled grey s slightly silty CLAY with sor cobbles and subrounded t subangular to rounded fine.	ravelly silty CLAY with some obles and subrounded bould	e to	
3.00	В				110.99 110.89	\vdash (0.10)	Stiff Dark grey/black slight CLAY. Gravel is subangula Complete at 3.00m	ly sandy slightly gravelly silt ar to subrounded fine to coa	y se.	
						- - - - - - - - -				
Plan .						•	Remarks Groundwater encountered a	t 1.60m BGL (slow seepage	e).	
							Groundwater encountered a Side walls spalling at 2.20m Trial pit backfilled on comple	etion.		
		ě								
							Scale (approx)	Logged By	Figure No.	_
							1:25	MS	9766-07-20.TP03	i

	Grou	ınd In	vesti ww	gations Ire w.gii.ie	eland	Ltd	Site The Quarter at Citywest, C	Cooldown Commons Phase		Trial Pit Number TP04
	Tonne Tracked Excavator	Dimens 2.00m	ions	3.00m (L x W x D)		Level (mOD) 116.17	Client DBFL			Job Number 9766-07-20
			n (dGPS) 4953.8 E	727155.7 N	Dates 31	1/07/2020	Engineer			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	F	ield Records	Level (mOD)	Depth (m) (Thickness)	D	escription	L	Vater Variet
					115.97	(0.20) - (0.20) - 0.20	and plywood, plastic and gangular to subrounded find	slightly gravelly CLAY. Grave	is	
0.50	В					(0.90)	angular to subrounded find	e to coarse.		
1.00	В				115.07	1.10	Firm brown slightly sandy occasional angular to subro	gravelly slightly silty CLAY wrounded cobbles and boulde unded fine to coarse.	vith ×	
2.00	В				114.37	1.80	Soft to firm brown sandy g frequent subangular to rou Gravel is subangular to ro	ravelly slightly silty CLAY wi inded cobbles and boulders unded fine to coarse.	th ×	
			Water sti	rike(1) at 2.60m.	113.57	2.60	Light brown clayey sandy coarse GRAVEL with occa cobbles and boulders.	subangular to subrounded fi sional subangular to rounde	ine to	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
3.00	В				113.17	3.00	Complete at 3.00m		1	<u> </u>
Plan .							 Remarks			
							Groundwater encountered a Side walls spalling at 2.60m Trial pit backfilled on comple	it 2.60m BGL (slow seepage BGL. etion.	e).	
					•					
							,			
						\$	Scale (approx) 1:25	Logged By MS	Figure 9766-07	No. 7-20.TP04

	Grou	nd In	vestigat www.g		Site The Quarter at Citywest, Cooldown Commons Phase 3 Trial Pit Numbe TP05					
	Tonne Tracked Excavator Trial Pit	Dimens 2.90m	ions x 0.70m x 3.00m	ı (L x W x D)	Ground Level (mOD) 111.92		Client DBFL			Job Number 766-07-20
			n (dGPS) 5046.1 E 72725	2.6 N	Dates 29	/07/2020	Engineer			Sheet 1/1
Depth (m)	Depth (m) Sample / Tests D		Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	Description	Le	Mater Manage
0.60 1.10 2.00	В В	. (m)	Water strike(1)	at 1.80m.	111.37 111.02 110.42 109.72 108.92	- (0.55) - (0.55) - (0.35) - (0.35) - (0.60) - (0.60) - (0.70) - (0.50) - (0.30) - (0.30) - (0.30) - (0.30)	MADE GROUND: Grey sli subangular fine to coarse subangular fine to coarse subangular cobbles and gravelly CLAY. Gravel is st coarse. Soft to firm brown mottled gravelly silty CLAY with so cobbles. Gravel is subang. Firm dark brown mottled g CLAY with occasional subboulders and sand lenses fine to coarse. Medium dense brown/grey SAND with occasional sub Gravel is subangular to ro	grey slightly sandy slightly ubangular to subrounded fin ottled grey slightly sandy sligme subangular to subroundular to subrounded fine to contract the subrounded fine to contract the subrounded cobbles angular to rounded cobbles. Gravel is subangular to rounded cobbles unded fine to coarse.	e to htty ed parse.	S S
							Groundwater encountered a Side walls spalling at 1.80m Trial pit backfilled on complete	BGL.	·).	
						.	Scale (approx)	Logged By	Figure N	lo.
							1:25	MS	9766-07	-20.TP05

	Gro	und In	vestigat www.g		Ltd	Site The Quarter at Citywest, C	Trial Pit Number TP06	Number				
	Tonne Tracked Excavator Trial Pit	Dimens 2.80m	ions x 0.70m x 3.60m	ı (L x W x D)		Level (mOD) 111.16	Client DBFL	Job Number 9766-07-2				
			n (dGPS) 5088.5 E 72729	4.1 N	Dates 29	9/07/2020	Engineer		Sheet 1/1			
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	אמופו		
0.50	В						110.96	(0.20) 0.20 - 0.20 (0.70)	MADE GROUND: Brown s fabric fragments. Gravel is to coarse. Soft to firm brown mottled gravelly slightly silty CLAY. subrounded fine to coarse	Gravel is subangular to	vith fine	
1.00	В				110.26	0.90	slightly silty CLAY with occ	rown slightly sandy gravelly asional subangular to rel is subangular to subroun	ded x x x x x x x x x			
2.10	В				109.06	(1.20)	with occasional angular to	andy gravelly slightly silty C subangular cobbles. Grave	x o x o x o x o x o x o x o x o x o x o			
			Water strike(1)	at 2.80m.	108.26	(0.80) - - - - - - - - - - - - - - - - - - -	angular to subangular fine	to coarse.	* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	<u>'</u> 1		
3.00	3.00 B				107.86	(0.40)	some subrounded to round subangular to rounded fine	ghtly gravelly silty CLAY with ded cobbles. Gravel is a to coarse. y slightly gravelly silty CLAY ed cobbles. Gravel is e to coarse.	× · · · · · · · · · · · · · · · · · · ·			
					107.56	- (0.30) 3 - 3.60	subrounded to rounded fin Complete at 3.60m	e to coarse.	*			
Plan .							Remarks Groundwater encountered a	t 2 80m BGL (slow seenage)			
							Side walls spalling at 1.60m Trial pit backfilled on comple	BGL.	· /·			
							Scale (approx)	Logged By	Figure No.	_		
							1:25	MS	9766-07-20.TP06	j		

	Grou	nd In		gations Ire w.gii.ie	Trial Pi Number TP0* The Quarter at Citywest, Cooldown Commons Phase 3 Trial Pi Number TP0*						
Machine : 8 Tonne Tracked Excavator Method : Trial Pit		Dimens 2.40m	ions	2.00m (L x W x D)		Level (mOD) 111.52	Client DBFL			Job Number 9766-07-2	
			n (dGPS) 5001.9 E	727278.9 N	Dates 30	/07/2020	Engineer			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	F	ield Records	Level (mOD)	Depth (m) (Thickness)	D	escription		Legend	Water
0.70 1.00	B B	Vactin (m)		rike(1) at 1.80m.	111.02 110.62 109.82	(0.50)	MADE GROUND: Grey/brito subangular fine to coars subangular cobbles. Firm brown slightly sandy subangular to subrounded Gravel is subangular to subrounded boulders and some rootlet subrounded fine to coarse	own slightly clayey sandy and see Gravel with some angular slightly gravelly CLAY with so cobbles and some rootlets. brounded fine to coarse. slightly gravelly CLAY with so cobbles, angular to subroun s. Gravel is subangular to .	gular to	Legend	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Plan							Remarks Groundwater encountered a Side walls spalling at 1.80m Trial pit terminated due to cc Trial pit backfilled on comple	BGL. onfined work area. stion.			
						8	Scale (approx) 1:25	Logged By MS	Figure 9766-0	No. 07-20.TF	207

	Grou	nd In		gations Ire w.gii.ie	Site The Quarter at Citywest, Cooldown Commons Phase 3 Trial Numl TP0					
Machine: 8 Tonne Tracked Excavator Method: Trial Pit		Dimens 2.40m	ions	2.80m (L x W x D)	Ground Level (mOD) 111.32		Client DBFL	Job Number 9766-07-2		
			n (dGPS) 5021.1 E 7	27291.3 N	Dates 30	/07/2020	Engineer		Sheet 1/1	_
Depth (m)	Sample / Tests	Water Depth (m)	Fie	eld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.60	В		Water stri	ke(1) at 0.30m.	110.92 110.72	0.40 - 0.40 - 0.20 - 0.60	to subangular fine to coars subangular cobbles. Firm brown mottled grey s with some angular to subrusubangular to rounded fine	own slightly clayey sandy are a Gravel with some angular andy gravelly slightly silty Clounded cobbles. Gravel is e to coarse. It slightly silty CLAY with counded cobbles and boulde unded fine to coarse.	LAY Y	Z 1
1.00	В					(1.40)				
2.00	В				109.32	(0.60)	Gravel is angular to subro		rs. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2.80	В				108.52	(0.20)	Stiff brown sandy gravelly occasional angular to subrand sand lenses. Gravel is coarse. OBSTRUCTION at 2.80r Complete at 2.80m	ounded cobbles and bouldes angular to subrounded fine	ers × · · · · · · · · · · · · · · · · · ·	
Dia						<u>-</u>	Barrandra			
Plan .		•				•	Remarks Groundwater encountered a Side walls spalling at 1.50m	it 0.30m BGL (slow seepage BGL.	·).	
		•	•			- 1	Trial pit terminated due to be Trial pit backfilled on comple	oulders.		
		•	•			•				
		•				.	Scale (approx)	Logged By	Figure No.	_
							1:25	MS	9766-07-20.TP08	ŏ

	Grou	nd In		ations Ire v.gii.ie	Trial Pit Number The Quarter at Citywest, Cooldown Commons Phase 3 Trial Pit Number TP09						
	Tonne Tracked Excavator Trial Pit	Dimens 2.80m		.00m (L x W x D)		Level (mOD) 111.13	Client DBFL			Job Number 9766-07-2	
			n (dGPS) 4967.2 E 72	27311.4 N	Dates 30	/07/2020	Engineer			Sheet 1/1	
Depth (m)	Depth (m) Sample / Tests		Fiel	ld Records	Level (mOD)	Depth (m) (Thickness)	Description (3)	escription		Legend 5	אמופו
0.50 1.00 2.00	В		Water strik	te(1) at 2.30m.	110.83 110.73 110.33	- (0.10) - (0.40) - (0.40) - (0.80) - (1.50) - (0.70) - (0.70) - (0.70) - (0.70)	to subangular fine to coars to subangular cobbles. Stiff brown slightly sandy s subangular to subrounded is subangular to subrounded subrounded fine to coarse Stiff brown slightly sandy s subangular to subrounded subrounded fine to coarse Stiff brown mottled grey sli CLAY with occasional ang boulders. Gravel is subang coarse.	lightly gravelly CLAY with so cobbles. Gravel is subangu	gular pme ravel pme lar to		?1
		•	•			•	Groundwater encountered a Side walls spalling at 2.20m	BGL.			
		•				•	Trial pit backfilled on comple	etion.			
		٠	•								
			•								
							Scale (approx)	Logged By	Figure	No.	_
							1:25	MS	9766-0	7-20.TP09	9

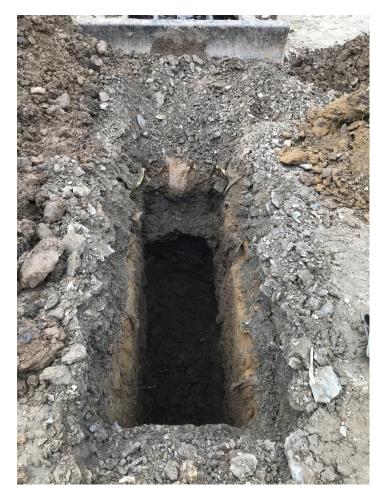
City West Phase 3 Trial Pit Photos

TP01

TP01

TP02

TP03



TP04

TP05

TP07

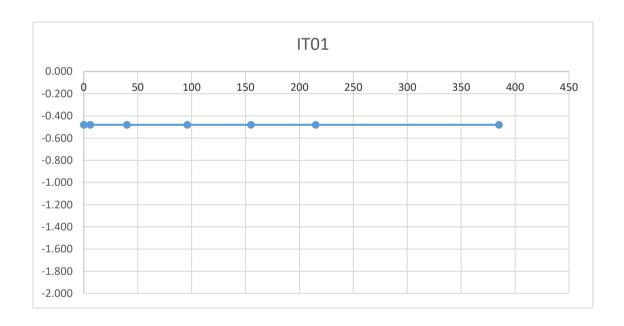
TP08

TP09

APPENDIX 3 – Soakaway Results

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie


Web: www.gii.ie

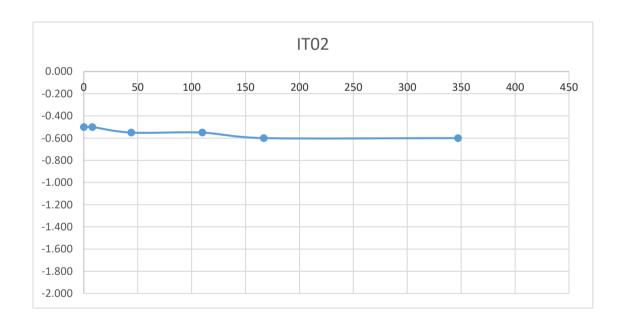
IT01 Infiltration Test to BRE Digest 365 Trial Pit Dimensions: 1.8m x 0.70m 1.50m (L x W x D)

Date	Time	Water leve (m bgl)	ıl
30/07/2020	0	-0.480	
30/07/2020	6	-0.480	
30/07/2020	40	-0.480	
30/07/2020	96	-0.480	
30/07/2020	155	-0.480	
30/07/2020	215	-0.480	
30/07/2020	385	-0.480	

*Soakaway failed - Pit backfilled

Start depth **Depth of Pit** Diff 75% full 25%full 0.48 1.500 1.020 0.735 1.245

IT02
Infiltration Test to BRE Digest 365
Trial Pit Dimensions: 1.50m x 0.70m 1.50m (L x W x D)


Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie

Email: info@gii.ie Web: www.gii.ie

*Soakaway failed - Pit backfilled

Start depth Depth of Pit Diff 75% full 25%full 0.50 1.500 1.000 0.75 1.25

	Grou	ınd Inv	vestigations Ire www.gii.ie	eland	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3 Trial Pit Number IT01			r	
Machine: 8 E Method: 7	3 Tonne Tracked Excavator Frial Pit	Dimensi 1.80m x			Level (mOD) 111.65	Client DBFL			Job Number 766-07-2	
		Location 705	n (dGPS) 047.7 E 727260.6 N	Dates 30	0/07/2020	Engineer		;	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	L	egend	Water
				111.25 111.00	(0.25) - (0.85) - (0.85) - (0.85)	Soft to firm brown slightly Gravel is subangular to subsome subangular to subrosubangular	sandy slightly gravelly CLAY. brounded fine to coarse. grey sandy gravelly CLAY w unded cobbles. Gravel is	· :		
Plan .	•	•				Remarks No groundwater encountere Side walls stable. Trial pit backfilled on comple				
		•				mai pit backiilled on comple	Juoi I			
		•								
						Scale (approx)	Logged By	Figure N	No.	_
						1:25	MS	9766-07	7-20.IT0	1

	Grou	nd In	vestigations Ire www.gii.ie	Ltd	Site The Quarter at Citywest, C	Cooldown Commons Phase 3	Trial Pit Number IT02	
Machine : 8	3 Tonne Tracked Excavator Trial Pit	Dimensi 1.50m >			Level (mOD) 112.09	Client DBFL		Job Number 9766-07-20
			n (dGPS) 5114.1 E 727228.8 N	Dates 30	0/07/2020	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate
				111 50		subrounded cobbles and g		
				111.59	0.50	Soft to firm brown slightly s Gravel is subangular to su	sandy slightly gravelly CLAY. brounded fine to coarse.	* : • . • • •
				111.29	- 0.80 (0.70)	Soft brown/grey slightly sa with some angular to subr subangular to subrounded	ndy gravelly slightly silty CL ounded cobbles. Gravel is fine to coarse.	AY × 0 · · · · · · · · · · · · · · · · · ·
								× · · · · · · · · · · · · · · · · · · ·
				110.59	1.50	Complete at 1.50m		X. O
					_			
					<u>-</u> -			
					- - -			
					<u>-</u>			
					_ _ _			
Plan .						Remarks Groundwater encountered a	t 1 20m BGL (medium seep:	age)
						Side walls stable. Trial pit backfilled on comple		ago).
					5	Scale (approx) 1:25	Logged By MS	Figure No. 9766-07-20.IT02

City West Phase 3 Infiltration Test Photos

IT01

IT01

IT02

APPENDIX 4 – Window Sample Records

	Groui	nd In	vestigations Irel www.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Pha	ase 3	Number WS01
Machine : Te	rive-in Windowless	Dimens	ions mm to 2.00m		Level (mOD) 111.88	Client DBFL		Job Number 9766-07-20
5	ampler		mm to 3.00m	Datas		Factoria		
			n (dGPS) 5165.1 E 727226 N	Dates 28	/07/2020	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend ja
				111.58	(0.30) - (0.30) - 0.30	TOPSOIL Firm brown mottled grey slightly sandy slightly grave CLAY with occasional subangular cobbles	velly	0. <u>10.</u> 9
0.50	В				(0.70)			6 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1
0.70	EN			110.88	- - - - -	Firm brown mottled grey slightly sandy gravelly CL Gravel is fine to coarse, angular to subangular	_AY.	
1.50	В				(0.80)		•	0 0 0
1.70	EN			110.08	1.80 - 1.80 	Firm dark grey slightly sandy gravelly CLAY. Grave to coarse, angular to subangular	el is fine	
2.50	В				(1.20)			
Damarko				108.88	3.00	Complete at 3.00m		
Remarks 0.00m-1.00m 1.00m-2.00m 2.00m-3.00m Complete at Borehole bad	n BGL: 100% Recove n BGL: 90% Recover n BGL: 100% Recove 3.00m BGL ckfilled upon complet	ery 'Y ery tion					Scale (approx) 1:25 Figure No. 9766-07-	AB o. 20.WS01

	Groui	nd In	vestigations Irel www.gii.ie	Ltd	Site The Quarter at Citywest, Cooldown Commons Pha	ase 3	Number WS02	
	ecop 10 rive-in Windowless ampler	Dimens			Level (mOD) 12.61	Client DBFL	!	Job Number 9766-07-20
			n (dGPS) 5146.2 E 727193.4 N	Dates 28	/07/2020	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	ı	Legend Nate
0.50 0.70	B EN			112.31	(0.30) - (0.30) - (0.30) - (1.20)	TOPSOIL Firm to stiff brown mottled grey slightly sandy grave CLAY. Gravel is fine to coarse, angular to subangu	elly lar	
1.50 1.70	B EN			111.11	1.50	Firm brown slightly sandy gravelly CLAY with occasubangular cobbles. Gravel is fine to coarse, angu subangular	sional lar to	
2.50	В			110.51 110.11	2.10	Stiff brown sandy gravelly CLAY. Gravel is fine to c angular to subangular Medium dense dark grevish brown clavey gravelly.		
2.00	J			109.61	(0.50)	Medium dense dark greyish brown clayey gravelly coarse SAND. Gravel is fine to coarse, angular to subangular Complete at 3.00m	:	
Remarks							Scale	Logged
0.00m-1.00m 1.00m-2.00m 2.00m-3.00m Complete at	n BGL: 85% Recover n BGL: 95% Recover n BGL: 65% Recover 3.00m BGL ckfilled upon complet	y y y ion					Scale (approx) 1:25 Figure No. 9766-07-	AB o20.WS02

Ground Investigations Ireland Ltd www.gii.ie						Site The Quarter at Citywest, Cooldown Commons Phase		Number WS03
	ecop 10 rive-in Windowless ampler	Dimensi 88r 68r	nm to 2.00m nm to 3.00m		Level (mOD) 112.77	Client DBFL		Job Number 9766-07-20
			n (dGPS) 5118.3 E 727199.5 N	Dates 28	/07/2020	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	-egend to
				112.37	(0.40)	Fill: Dark grey slightly clayey sandy fine to coarse ar to subangular GRAVEL (Crushed Rock Fill)		
0.50	В			112.37	- 0.40	Firm to stiff brown slightly sandy slightly gravelly CL/ occasional subangular cobbles	AY with	. <u>0 *0 *0</u> . 0 <u>*0</u> *0
0.70	EN				(0.50)		<u>6</u>	.0.00.0. 0.00.0.
				111.87	0.90	Firm greyish brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coa angular to subangular	h arse,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				111.27	1.50			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.50	В			111.27	1.50	Medium dense brown clayey gravelly fine to coarse with gravelly lenses. gravel is fine to coarse, angular subangular	SAND :	
1.70	EN				- - - - - - - - - - - - - - - - - - -	J		
2.50	В			109.77	3.00	2.00m-3.00m BGL: Poor recovery		
Remarks 0.00m-1.00m	n BGL: 100% Recov	erv		109.77	3.00	Complete at 3.00m	Scale (approx)	Logged
Complete at	n BGL: 100% Recove n BGL: 65% Recove n BGL: 30% Recove 3.00m BGL ckfilled upon comple						1:25 Figure No 9766-07-2	AB

	Grou	nd In	vestigations Ire www.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Number WS04
	ecop 10 rive-in Windowless ampler	Dimens 88 68			Level (mOD) 112.80	Client DBFL	Job Number 9766-07-20
		Locatio 70	n 5078.4 E 727202.1 N	Dates 28	8/07/2020	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nater
0.50	В			112.50	0.30	MADE GROUND: Brown/black sandy gravelly Clay with charcoal and concrete fragments. Gravel is fine to coarse, angular to subangular Soft brown slightly sandy slightly gravelly CLAY	
0.70	EN			112.10	0.70	Soft to firm brown mottled grey slightly sandy slightly	
0.70	LIV				(0.30)	gravelly CLAY	0.0
				111.80	1.00	Soft to firm brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.50	B EN			110.80	(1.00)	Soft brown slightly sandy slightly gravelly CLAY	0.000 0.000 0.000 0.000 0.000 0.000
2.50	В			110.20	(0.60)	Firm to stiff dark brownish grey slightly sandy gravelly	
					(0.40)	CLAY. Gravel is fine to coarse, angular to subangular	
				109.80	3.00	Complete at 3.00m	
Complete at	n BGL: 100% Recove n BGL: 70% Recove n BGL: 85% Recove 3.00m BGL ckfilled upon comple				- - - - -	Scale (approx	AB
							07-20.WS04

G	Grou	nd In	vestigations Irel	land I	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase	se 3	Number
Machine	neen 10	I	www.gii.ie					WS05
	rive-in Windowless ampler	Dimens 88 68	ions mm to 2.00m mm to 3.00m		Level (mOD) 13.88	Client DBFL	9	Job Number 9766-07-20
		Locatio	n	Dates	/07/2020	Engineer		Sheet
			5038.3 E 727166.1 N	20				1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	ı	Legend ja
					(0.40)	Soft to firm reddish brown slightly sandy slightly gra CLAY (Possible Made ground)	ıvelly	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	_			113.48	0.40	Firm to stiff brown slightly sandy gravelly CLAY. Gra fine to coarse, angular to subangular	avel is	• • • • • • • • • • • • • • • • • • • •
0.50	В				_		:	*.
0.70	EN				(0.60)		:	
					<u></u>		•	*****
				112.88	1.00	Soft to firm light brown slightly sandy gravelly CLAY occasional subangular cobbles. Gravel is fine to coangular to subangular	with arse,	0.0.0 0.0.0 0.0.0 0.0.0
					_		7	<u>o 107</u> 0 <u>O 10</u> 0
1.50	В							\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.70	EN				(1.50)		<u>.</u>	\$ \frac{1}{12} \fr
					E ()		<u>-</u> با	0.050
					_		ļ.	o <u>.o.</u> o.
								<u> </u>
					_		<u> </u>	\$.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
				111.38	2.50			0 .0 .0 0 .0 .0
2.50	В			111.30	2.50	Firm to stiff brownish grey slightly sandy gravelly Cl occasional subangular cobbles. Gravel is fine to co- angular to subangular	LAY with arse,	0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
2.70	EN				(0.50)	angular to subangular		<u>. 'a . '</u> . '
					_		-	<u>`</u>
				110.88	3.00	Complete at 3.00m		3 · 5 d ·
					_	·		
					_			
					_			
					_			
					_			
					_			
					<u></u>			
					_			
					_			
					_			
Remarks 0.00m-1.00n 1.00m-2.00n	n BGL: 100% Recover	ery	<u> </u>	l			Scale (approx)	Logged By
2.00m-3.00n Complete at	n BGL: 100% Recover n BGL: 75% Recover n BGL: 80% Recover 3.00m BGL	y y					1:25	AB
Borehole ba	ckfilled upon complet	tion					Figure No	
							9766-07-	20.WS05

CI	Ground Investigations Irel				Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Number WS06
Machine : To	ecop 10 Prive-in Windowless	Dimens	www.gii.ie ions mm to 2.00m		Level (mOD) 113.56	Client DBFL	Job Number
S S	Sampler	00	11111 to 2.00111		113.30	DBFL	9766-07-20
			n (dGPS) 4992.8 E 727191.4 N	Dates 28	/07/2020	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Page N
0.50 0.70	B EN			112.56	(1.00)	Firm brown mottled grey slightly sandy gravelly CLAY with subangular cobbles. Gravel is fine to coarse, angular to subangular cobbles Gravel is fine to coarse, angular to subangular cobbles Gravel is fine to coarse, angular to subangular. 1.00m-2.00m BGL: Poor recovery due to cobble. Complete at 2.00m	
Refusal at 2	n BGL: 95% Recover BGL: 30% Recovery .00m BGL ckfilled upon comple				<u>-</u>	Sca (appr	5 AB
							ire No. 66-07-20.WS06

	Ground Investigations Ireland Ltd www.gii.ie					Site The Quarter at Citywest, Cooldown Commons Pha	ase 3	Numbe	
Machine : Te	ecop 10 rive-in Windowless ampler	Dimensi 88r 68r			Level (mOD) 114.70	Client DBFL		Job Numbe 9766-07	
			n (dGPS) 1973.7 E 727175.5 N	Dates 28	8/07/2020	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.50	В					Firm to stiff brown slightly sandy gravelly CLAY wi occasional subangular cobbles. Gravel is fine to c angular to subangular	th :oarse,		
0.50					<u></u>			. .0. 0 .00 .00	
0.70	EN				<u> </u>			<u>.0.0.0</u>	
				113.80	(0.60)	Firm greyish brown slightly gravelly sandy CLAY woccasional subangular cobbles	vith		
1.50	В			113.20	1.50	Stiff brown slightly sandy gravelly CLAY with some subangular cobbles. Gravel is fine to coarse, angu	e ular to	6 0 0 6 0 0	
2.50	EN				- - - - - - - - - - - - - - - - - - -	subangular			
2 70	FN				-			· <u>a · o</u>	
Remarks	EN			111.90	2.80	Complete at 2.80m		iò <u>√°≥</u> Ø 6 · n d ·	
0.00m-1.00m 1.00m-2.00m 2.00m-2.80m Refusal at 2.	n BGL: 100% Recove n BGL: 90% Recove n BGL: 100% Recove 80m BGL ckfilled upon comple	ery ry ery tion					Scale (approx) 1:25 Figure N 9766-07		

C	Groui	nd In	vestigations Irel	_td	Site The Quarter of Citywest Cooldown Commons Phase 2	Number	
			www.gii.ie			The Quarter at Citywest, Cooldown Commons Phase 3	WS08
Machine : Te	ecop 10 rive-in Windowless	Dimens	ions mm to 2.00m		Level (mOD) 15.58	Client DBFL	Job Number
	ampler	681	mm to 3.00m		13.30		9766-07-20
			n (dGPS) 4946.3 E 727176.6 N	Dates 28	/07/2020	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Vate Vate Vate Vate Vate Vate Vate Vate
0.50 0.70	B EN			115.38	(0.20) - (0.20) - 0.20 (0.70)	MADE GROUND: Greyish brown slightly gravelly sandy Clay with plastic (Possible made ground) Firm to stiff brown slightly sandy gravelly CLAY with organic matter and occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	y <u>5 0 9</u>
				114.68 114.18	0.90 - - - - - - - - - - - - - - - - - - -	Soft to firm light brown slightly sandy gravelly CLAY with occasional rootlets. Gravel is fine to coarse, angular to subangular	
1.50	В				(0.20)	Soft to firm dark brown slightly sandy organic CLAY	3/2 3/2 3/2 3/2
1.70	EN			113.98	1.60	Firm brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				113.58	2.00	Soft to firm greyish brown slightly sandy gravelly CLAY v rootlets 2.00m-3.00m BGL: Poor recovery	vith (10 m) (10
2.70	EN			112.58	3.00		*
Romarks				112.30	- 3.00	Complete at 3.00m	
2.00m-3.00m Complete at	n BGL: 100% Recove n BGL: 70% Recover n BGL: 25% Recover 3.00m BGL ckfilled upon complet	У				1:2 Fig	

	Ground Investigations Ireland Ltd					Site The Quarter at Citywest, Cooldown Commons Phase 3		Number WS09	
Machine : Tecop 10 Method : Drive-in Windowless Sampler		Dimensions 88mm to 2.00m 68mm to 3.00m		Ground Level (mOD)		Client DBFL		Job Number 9766-07-20	
3	ampiei	Locatio		Dates		Engineer		Sheet	
			28/07/2020				1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
					(0.30)	Soft to firm greyish brown slightly sandy slightly gr CLAY with occasional rootlets (Possible Made Gro	ravelly ound)		
					0.30	Firm to stiff reddish brown slightly sandy slightly g CLAY	ravelly	• • • • • •	
0.50	В				0.60	Soft to firm growish brown slightly candy slightly a	ravally		
0.70	EN				_	Soft to firm greyish brown slightly sandy slightly gr CLAY with occasional subrounded cobbles	avelly	\$ \\ \frac{\dagger}{\dagger} \qqq \q	
					(0.60)			6	
					1.20	Soft grey mottled brown slightly sandy gravelly CL Gravel is fine to coarse, angular to subangular	-AY.	, <u>a p</u> , o	
1.50	В				(0.70)				
1.70	EN EN				(0.70)		<u>-</u>		
1.70	LIN				1.90				
						Firm brown slightly sandy gravelly CLAY. Gravel is coarse, angular to subangular	s fine to		
					-		•		
					(1.10)				
2.50	В								
2.70	EN								
					3.00	Complete at 3.00m		• • • • • • • • • • • • • • • • • • • •	
					_	Complete at 3.00m			
					_				
					<u></u>				
					_				
					_				
					<u>-</u>				
					_				
					<u>-</u>				
Remarks 0.00m-1.00r 1.00m-2.00r	n BGL: 100% Recover	ery Ty	<u>I</u>	I		ı	Scale (approx)	Logged By	t
2.00m-3.00r Complete at	n BGL: 60% Recover 3.00m BGL ckfilled upon complet	ГУ					1:25	AB	
	· ·						Figure No. 9766-07-		9

	Ground Investigations Ireland Ltd					Site The Quarter at Citywest, Cooldown Commons Phase 3		Number WS10	
Machine : Tecop 10 Method : Drive-in Windowless Sampler		Dimensions 88mm to 1.30m		Ground Level (mOD) 113.90		Client DBFL		Job Number 9766-07-20	
·		Location (dGPS) 704977.8 E 727197.4 N		Dates 28/07/2020		Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kafe Presend	
0.50 0.70	B EN			113.55	(0.35) - (0.35) - (0.35) - (0.45) - (0.80 - (0.50)	MADE GROUND: Greyish brown slightly gravelly sandy CLAY with occasional rootlets Soft to firm dark brown slightly sandy slightly gravelly CL with organic matter Firm to stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular Complete at 1.30m	/		
Refusal at 1.	n BGL: 90% Recover n BGL: 100% Recove 30m BGL ckfilled upon complet					1:2 Fig	25 gure No	AB o. 20.WS10	

C	Ground Investigations Ireland Ltd					Site The Quarter at Citywest, Cooldown Commons Phase 3		r
www.gii.ie								1
Machine : Tecop 10 Method : Drive-in Windowless Sampler		Dimensions 88mm to 2.00m 68mm to 2.80m		Ground Level (mOD) 113.86		Client DBFL	Job Numbe 9766-07-	
J	атро		n (dGPS)	Dates		Engineer	Sheet	\dashv
		704949.7 E 727218.4 N		28/07/2020		-	1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
				113.71	(0.15) - 0.15	Greyish brown slightly sandy slightly gravelly CLAY wit organic matter (Possible Made Ground)	h	
						Stiff brown slightly sandy slightly gravelly CLAY	0.0000	
0.50	В				(0.85)			
0.70	EN				- - -			
				112.86	1.00	Firm to stiff brown sandy gravelly CLAY. Gravel is fine to	to	
					(0.40)	coarse, angular to subangular		
				112.46	1.40	Stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to	al 0 .0 .0 .0	
1.50	В				- - -	subangular	0 0 0 0 0 0	
1.70	EN				- - -		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
					(1.40)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
							10 10 0 6 0 0 6 0 0	
						2.00m-2.80m BGL: Poor Recovery	\$\frac{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	
2.70	EN				-		0 0 0 0 0 0	
				111.06	2.80 	Complete at 2.80m		
					- - -			
					- -			
					<u>-</u> - -			
					- - -			
					 - - -			
					- -			
					<u></u>			
Remarks 0.00m-1.00n	n BGL: 100% Recove	ery				S	cale Logged	t
2.00m-2.00n 2.00m-2.80n Refusal at 2.	n BGL: 100% Recove n BGL: 90% Recover n BGL: 25% Recover .80m BGL ckfilled upon comple:	y Ty tion					:25 AB	
Potetiole pa	окинеч арон соттріе	uUII					gure No. 1766-07-20.WS11	1

GI	Ground Investigations Ireland Ltd					Site The Quarter at Citywest, Cooldown Commons Phase 3	Number WS12
Machine : Tecop 10 Method : Drive-in Windowless Sampler		Dimensions 88mm to 2.00m 68mm to 3.00m		Ground Level (mOD) 112.74		Client DBFL	Job Number 9766-07-20
·		Location (dGPS) 704987.4 E 727227.4 N		Dates 28/07/2020		Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nater
0.50	B EN			112.44	- - - - - -	FILL: Brown slightly clayey sandy fine to coarse angular to subangular GRAVEL (Crushed Rock Fill) Stiff brown slightly sandy slightly gravelly CLAY with some subangular cobbles	
0.70	EN			111.54	- (0.90) 1.20	Stiff brown slightly sandy very gravelly CLAY with some subangular cobbles. Gravel is fine to coarse, angular to subangular	
1.50	B EN			110.74	(0.80) - (0.80) 	Stiff brown sandy gravelly CLAY. Gravel is fine to coarse,	
2.50	B EN				(1.00)	angular to subangular	
2.70	LIV			109.74	3.00	Complete at 3.00m	**************************************
Remarks						South	
0.00m-1.00m 1.00m-2.00m 2.00m-3.00m Complete at	n BGL: 90% Recover n BGL: 70% Recover n BGL: 95% Recover 3.00m BGL ckfilled upon complet	У					ox) By

CI	Groui	nd In	vestigations Irel	land I	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Number WS13
Machine : To	ocon 10	D	www.gii.ie	0	I (OD)	an d	
Method : D	rive-in Windowless ampler	Dimens 88 68	mm to 2.00m mm to 3.00m		Level (mOD) 111.81	Client DBFL	Job Number 9766-07-20
		Locatio	n (dGPS)	Dates	107/2020	Engineer	Sheet
		70	4985.6 E 727249.4 N	20	/07/2020		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend ja
				111.77 111.76	- 0.04 - 0.05 - (0.20)	MADE GROUND: Brownish grey slightly sandy slightly gravelly Clay	**************************************
				111.56	0.25	GEOTEXTILE	0 <u></u>
					_	Stiff brown slightly sandy slightly gravelly CLAY	<u> </u>
0.50	В				_	Firm to stiff greyish brown slightly sandy gravelly CLAY with some subangular cobbles. Gravel is fine to coarse, angular to subangular	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
0.70	EN				(0.80)	to outungular	10 10 0 10 10 0
0.70	EN				_		· · · · · · · · · · · · · · · · · · ·
					-		\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
				110.76	1.05	Firm brown slightly sandy gravelly CLAY with some	10 10 00 10 10 00
					(0.25)	subangular cobbles	· · · · · · · · · · · · · · · · · · ·
				110.51	1.30	Medium dense brown slightly clayey gravelly fine to coarse	0.00
	_					SAND with occasional cobbles. Gravel is fine to coarse, angular to subangular	
1.50	В				_		
1.70	EN				F		
					(1.00)		
					-		
				109.51	2.30		
				109.51	2.30	Medium dense brown sandy very gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse,	0.000
2.50	В					angular to subangular	10 10 0 10 10 0
					(0.70)		· · · · · · · · · · · · · · · · · · ·
2.70	EN						6 0 0 0
					_		<u>v</u> .0= α ·, α . δ.
				108.81	3.00	Complete at 3.00m	6.54.
					E	·	
					_		
					_		
					_		
					_		
					Ē		
					<u> </u>		
					-		
					E		
					Ė.		
Remarks					_		
0.00m-1.00n 1.00m-2.00n	n BGL: 85% Recover n BGL: 55% Recover	y y				Scale (approx)	Logged By
2.00m-3.00n Complete at	n BGL: 45% Recover 3.00m BGL	y tion				1:25	AB
poremote par	ckfilled upon complet	uOH				Figure	
						9766-0	7-20.WS13

	Groui	nd In	vestigations Iro www.gii.ie	eland l	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Number WS14
	ecop 10 rive-in Windowless ampler				Level (mOD) 112.69	Client DBFL	Job Number 9766-07-20
			n (dGPS) 1954.4 E 727266.5 N	Dates 28	/07/2020	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend kater
0.50 0.70 1.50 1.70 2.50 2.70	B EN B EN	(m)		112.09 111.49 110.29 109.69	(0.60)	Fill: Brown sandy fine to coarse angular to subangular Gravel with occasional angular cobbles (Crushed Rock File Stiff brown slightly sandy slightly gravelly CLAY with occasional rootlets Stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular GRAVEL with occasional subangular cobbles. Stiff brown sandy gravelly CLAY with occasional subangular cobbles. Stiff brown sandy gravelly CLAY with occasional sand lenses. Complete at 3.00m	
2.00m-3.00n Complete at	n BGL: 100% Recove n BGL: 85% Recover n BGL: 80% Recover 3.00m BGL	У			- - - - -	Scal (appro	
Borehole ba	ckfilled upon complet	tion				Figu	re No. 6-07-20.WS14

C	Groui	nd In	vestigations Irel	and I	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Number
			www.gii.ie			The Quarter at Citywest, Couldown Commons Phase 3	WS15
Machine : Te	ecop 10 rive-in Windowless	Dimens 88	ions mm to 2.00m		Level (mOD) 111.17	Client DBFL	Job Number
Sa	ampler		mm to 3.00m	D-1		-	9766-07-20
		Locatio 70	n 5082.3 E 727277.2 N	Dates 28	/07/2020	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate
				111.07	(0.10) - (0.10) - 0.10	FILL: Grey slightly clayey sandy fine to coarse angular to subangular GRAVEL with occasional angular cobbles (Crushed Rock Fill)	
					(0.40)	Soft to firm brown slightly sandy slightly gravelly CLAY with occasional rootlets	
0.50	В			110.67	0.50	Firm to stiff grey mottled brown slightly sandy gravelly CLAY with occasional rootlets. Gravel is fine to coarse, angular to	
0.70	EN				_	subangular	· · · · · · · · · · · · · · · · · · ·
					_		
					(1.00)		0.000
							• • • • •
1.50	В			109.67	1.50	Firm grey mottled brown sandy gravelly CLAY with	
						occasional rootlets. Gravel is fine to coarse, angular to subangular	
					(0.60)		
					_		
				109.07	2.10	Stiff dark brownish grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse,	• • • • • •
					<u></u>	angular to subangular	
2.50	В				(0.90)		
2.00					(0.90)		
					_		0.000
				108.17	3.00		• • • • • • • •
					_	Complete at 3.00m	
					_		
					_		
					<u>-</u>		
					_		
					<u>-</u> -		
Remarks 0.00m-1.00m	n BGL: 90% Recover n BGL: 90% Recover	y		<u> </u>		Scale (approx)	Logged By
2.00m-3.00m Complete at	า BGL: 60% Recover 3.00m BGL	У				1:25	AB
Borehole bad	ckfilled upon complet	ion				Figure 1	No. 7-20.WS15

G	Grou	nd In	vestigations Irel www.gii.ie	and l	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase	e 3	Number WS16
	ecop 10 Prive-in Windowless				Level (mOD) 12.07	Client DBFL	!	Job Number 9766-07-20
	ap.o.	Locatio	n (dGPS) 5034.8 E 727250.1 N	Dates 28	/07/2020	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Mater Mater
						FILL: Dark grey sandy fine to coarse angular Gravel vangular cobbles (Crushed Rock Fill)	with	
0.50	В			111.57	0.50	Stiff brown slightly sandy gravelly CLAY with occasion subangular cobbles. Gravel is fine to coarse, angular	nal r to	
0.70	EN				(0.50)	subangular	-	<u> </u>
				111.07	1.00	Firm brown slightly sandy gravelly CLAY with occasio subangular cobbles. Gravel is fine to coarse, angular subangular	onal r to	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.50	В			110.57	1.50	Soft to firm light brown sandy gravelly CLAY with occasand lenses	asional	\$ - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
				110.07	(0.50)		•	· · · · · · · · · · · · · · · · · · ·
				110.07	(0.50)	Firm light brown sandy gravelly CLAY with occasional lenses	al sand	
2.50	В			109.57	2.50	Stiff brown slightly sandy gravelly CLAY. Gravel is fine coarse, angular to subangular	e to	0 0 0
					(0.50)			
				109.07	3.00	Complete at 3.00m	•	
					- - - - -			
					- - - -			
					- - - -			
					 - - - - -			
					- - - - - - -			
Remarks 0.00m-1.00r 1.00m-2.00r	n BGL: 95% Recover	ry ry			<u> </u>	(a	Scale approx)	Logged By
2.00m-3.00r Complete at	n BGL: 60% Recover 3.00m BGL ckfilled upon comple	гу					1:25 Figure No	AB o.
							9766-07-	

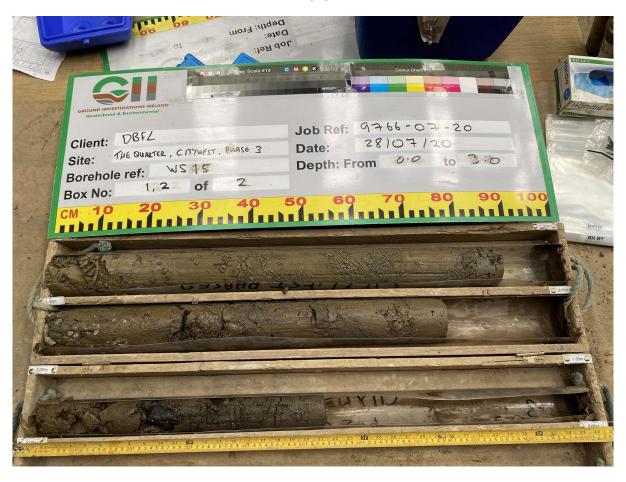
G	Groui	nd In	vestigations Irel www.gii.ie	and I	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Number WS17	
	rive-in Windowless	Dimens	ions mm to 2.00m		Level (mOD) 11.43	Client DBFL	Job Number 9766-07-20	
S	ampler		mm to 3.00m					_
		Locatio 70	n 5011.8 E 727283.4 N	Dates 28	/07/2020	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Vater Vater	
					(0.25)	FILL: Grey slightly clayey sandy medium to coarse angu to subangular Gravel (Crushed Rock Fill)	lar	
				111.18	0.25	Firm to stiff greyish brown slightly sandy gravelly CLAY wanny subangular cobbles. Gravel is fine to coarse, anguto subangular	with	
0.50	В				(0.43)		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0.70	EN			110.73	0.70	Stiff greyish brown slightly sandy gravelly CLAY with ma subangular cobbles. Gravel is fine to coarse, angular to subangular	ny 6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	
				110.33	(0.40)		<u>, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,</u>	
				110.33	1.10	Firm greyish brown slightly sandy gravelly CLAY with ma subangular cobbles. Gravel is fine to coarse, angular to subangular	any 0 0 0	
1.50	В				(0.90)	1.00m-2.00m BGL: Poor recovery	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
							0.0.0 0.0.0	
				100.42	2.00		0 . 2 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	
				109.43	2.00	Stiff brown slightly sandy gravelly CLAY with occasional sandy lenses. Gravel is fine to coarse, angular to subangular	* * * * * * * * * * * * * * * * * * * *	
					(1.00)		0.000	
2.50	В					2.00m-3.00m BGL: Poor recovery		
				400.40			0 0 0	
				108.43	3.00	Complete at 3.00m		
					<u>-</u> -			
					_			
					<u>-</u> -			
					<u>-</u> -			
					- -			
					-			
					<u>-</u> -			
Remarks 0.00m-1.00n 1.00m-2.00n	n BGL: 100% Recove n BGL: 40% Recover	ery Y			<u> </u>	Sc: (app	ale Logged brox) By	-
2.00m-3.00n Complete at	n BGL: 20% Recover	У				1:2	25 AB	
	33p10						ure No. 66-07-20.WS17	

C	Groui	nd In	vestigations Irel	land I	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	3	Number
	10	1	www.gii.ie			-		WS18
Machine : Te	ecop 10 rive-in Windowless	Dimens 88	mm to 2.00m		Level (mOD) 11.12	Client DBFL		Job Number
S	ampler	68	mm to 3.00m			F	9	9766-07-20
			n (dGPS) 4991.1 E 727304.4 N	Dates 28	/07/2020	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	Legend Age
						FILL: Greyish brown slightly clayey sandy fine to coarse angular to subangular Gravel (Crushed Rock Fill)	e	
0.50	В			110.62	0.50	Stiff brown mottled grey slightly sandy gravelly CLAY w occasional subangular cobbles. Gravel is fine to coarse	/ith	\$\frac{\infty}{\infty} \frac{\infty}{\infty}
0.70	EN					angular to subangular	e, -	<u> </u>
					(0.70)		6 6 	· · · · · · · · · · · · · · · · · · ·
				109.92	- - - -	Stiff brown sandy gravelly CLAY with occasional suban cobbles. Gravel is fine to coarse, angular to subangula	ngular 6	0 .0 . a
1.50	В				(0.50) - -		<u>6</u>	0 <u>10 0</u>
				109.42	- 1.70 - - - - - -	Stiff light brown sandy gravelly CLAY. Gravel is fine to coarse, angular to subangular		
							: : : : :	
2.50	В				- - - - -	2.00m-3.00m BGL: Poor recovery		0 0 0
				108.12	3.00		•	
				106.12	- 3.00 	Complete at 3.00m		
					- - - -			
Remarks 0.00m-1.00n 1.00m-2.00n	n BGL: 100% Recover	ery v				Sc (ap)	cale prox)	Logged By
2.00m-3.00n Complete at	า BGL: 20% Recover 3.00m BGL	У				1	:25	AB
Borehole ba	ckfilled upon complet	iion					gure No 766-07-2	o. 20.WS18

The Quarter, Citywest Phase 3

WS Photos

WS10



APPENDIX 5 – Dynamic Probe Results

	Ground Investigations Ireland Ltd www.gii.ie			Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3								Probe Numbe		
Machine:	TECOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground I	Level (mOD)	Client DBFL									Job Numb 9766-0	
		Location	Dates 28/0	07/2020	Engine	er								Sheet	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3 (6	Blows					24 2	27 :	30
0.00-0.10	3			0.00											+
0.10-0.20	2														<u> </u>
0.20-0.30 0.30-0.40	3 4			- -											
0.40-0.50 0.50-0.60	4 4			 											T
0.60-0.70	3			- -											+-1
0.70-0.80 0.80-0.90	4 3														_
0.90-1.00 1.00-1.10	2 4			 1.00											
1.10-1.20	5														
1.20-1.30 1.30-1.40	7 25			 - 											\vdash
1.40-1.50	23 16			- -										_	-
1.50-1.60 1.60-1.70	16 7			1.50 _ 											<u> </u>
1.70-1.80	5			- -											
1.80-1.90 1.90-2.00	5			 - 											
2.00-2.10	4			2.00											+-1
2.10-2.20 2.20-2.30	6			- -											<u></u>
2.30-2.40	6			 - -											
2.40-2.50 2.50-2.60	6 6			2.50											
2.60-2.70	6														+
2.70-2.80 2.80-2.90	9			- -											+-1
2.90-3.00 3.00-3.10	11 19			 3.00											<u> </u>
3.10-3.20	14			- -											
3.20-3.30 3.30-3.40	16 15														
3.40-3.50 3.50-3.60	25 25			 3.50											_
0.00				- - -											_
				 - 											
				- - -											
				4.00 											T
				- -											+
				 - 											_
				4.50 											
				_ 											
															_
Remarks				5.00								;	Scale approx)	Logg By	ed
													1:25	JM	
													Figure		
													9766-0	7-20.D)P01

	Gro	Ground Investigations Ireland Ltd www.gii.ie			Site The Quarter at Citywest, Cooldown Commons Phase 3										robe lumber DP02	
Machine:	TECOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	1	-evel (mOD)	Client DBFL	-								Job Numb 9766-0		
		Location 705082.3 E 727277.2 N	Dates 28/0	7/2020	Engine	eer							Sheet 1/1			
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3	6	Blows					24 2	27 (30	
0.00-0.10	22		111.17	0.00											F	
0.10-0.20 0.20-0.30	9			- -											\vdash	
0.30-0.40	5 3			- - -											L	
0.40-0.50 0.50-0.60	3 3		110.67	0.50												
0.60-0.70	3		-	 - 											T	
0.70-0.80 0.80-0.90	7 9		-	- -											\vdash	
0.90-1.00 1.00-1.10	6 6		110.17	 1.00											<u> </u>	
1.10-1.20	8			- -												
1.20-1.30 1.30-1.40	6 5			- - -												
1.40-1.50 1.50-1.60	4 3		109.67	 1.50											\vdash	
1.60-1.70	4			- -											\vdash	
1.70-1.80 1.80-1.90	4 4			- - -											\vdash	
1.90-2.00 2.00-2.10	4 5		109.17	- - - - 2.00												
2.10-2.20	8		109.17	2.00 - -												
2.20-2.30 2.30-2.40	6 5		-	 - 											\vdash	
2.40-2.50	6		400.07	- - -											\vdash	
2.50-2.60 2.60-2.70	8		108.67	— 2.50 -											\vdash	
2.70-2.80 2.80-2.90	13			- -												
2.90-3.00	12			- -												
3.00-3.10 3.10-3.20	24 18		108.17	3.00 - -											\vdash	
3.20-3.30	17		-	- -											\vdash	
3.30-3.40 3.40-3.50	31 23			 											31	
3.50-3.60	27		107.67	3.50												
3.60-3.70 3.70-3.80	55 36			- -											55 36	
3.80-3.90 3.90-4.00	33 25		-	 - 											33	
3.90-4.00	25		107.17	4.00											\vdash	
				 - _											_	
				- -												
			106.67	4.50												
			-												\vdash	
				- -											\vdash	
			106.17	- - 5.00											L	
Remarks												:	Scale approx)	Logge By	ed	
													1:25	JMI		
													Figure I			
													9766-0	7-20.D	P02	

	Gro	ound Investigations Ireland Ltd www.gii.ie			Site The Quarter at Citywest, Cooldown Commons Phase 3									Probe Number	
Machine:	TECOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm		.evel (mOD) 11.43	Client DBFI									Job Numl 9766-0	
		Location 705084.1 E 727261 N	Dates 28/0	7/2020	Engine	eer								Shee	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3	6		for De				24 2	27	30
0.00-0.10	15		111.43	0.00											+
0.10-0.20 0.20-0.30	14		-	<u>-</u> 											_
0.30-0.40	6			_ - -											
0.40-0.50 0.50-0.60	4 3		110.93	0.50											
0.60-0.70	4			_ - _											
0.70-0.80 0.80-0.90	4			- -											_
0.90-1.00 1.00-1.10	5 4		110.43	 1.00											_
1.10-1.20	3														
1.20-1.30 1.30-1.40	3 2			- -											
1.40-1.50 1.50-1.60	6 9		109.93	- - - 1.50											T
1.60-1.70	7			- -											_
1.70-1.80 1.80-1.90	6 4			 -											_
1.90-2.00 2.00-2.10	4 4		109.43	- - - 2.00											
2.10-2.20	4		109.43	- - -											
2.20-2.30 2.30-2.40	4 7			 - -											
2.40-2.50	6		400.00	-											_
2.50-2.60 2.60-2.70	6		108.93	— 2.50 -											
2.70-2.80	7			- -											
2.80-2.90 2.90-3.00	7			- -											
3.00-3.10 3.10-3.20	14		108.43	3.00											T
3.20-3.30	14			- -											\vdash
3.30-3.40 3.40-3.50	12 12			- - -											
3.50-3.60	16		107.93	3.50											
3.60-3.70 3.70-3.80	18			- -											
3.80-3.90	20			 - 											_
3.90-4.00 4.00-4.10	20 24		107.43	4.00											-
4.10-4.20 4.20-4.30	25 27			 - 										_	_
4.20-4.30	21			- -										l	
			106.93	4.50											
				_ - -											
				- -											_
Remarks			106.43	5.00									Scale (approx)	Logg By	ed
													1:25	JM	
												}	Figure		
													9766-0	7-20.D)P03

	Gro	und Investigations www.gii.ie	Ireland Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Probe Number
Machine :	TECOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground Level (mOI	O) Client DBFL	Job Number 9766-07-20
		Location 705043.1 E 727233.6 N	Dates 28/07/2020	Engineer	Sheet 1/1
Depth (m)	Blows for Depth Increment	t Field Records	Level Depth (mOD) (m)	Blows for Depth Increment	27 20
0.00-0.10	12		112.32 0.00	0 3 6 9 12 15 18 21 24	27 30
0.10-0.20	9		<u> </u>		
0.20-0.30 0.30-0.40	6 4		 		
0.40-0.50 0.50-0.60	3 3		111.82 - 0.50		
0.60-0.70	3		E		
0.70-0.80 0.80-0.90	2 2		-		
0.90-1.00 1.00-1.10	4 4		111.32 - 1.00		
1.10-1.20	5		<u> </u>		
1.20-1.30 1.30-1.40	5 4		l E		
1.40-1.50 1.50-1.60	3 3		110.82 - 1.50		
1.60-1.70	2		-		
1.70-1.80 1.80-1.90	3 3		<u> </u>		
1.90-2.00 2.00-2.10	3 4		110.32 - 2.00		
2.10-2.20	3				
2.20-2.30 2.30-2.40	4 5		<u> </u>		
2.40-2.50 2.50-2.60	7 6		109.82 — 2.50		
2.60-2.70	8		109.02 2.30		
2.70-2.80 2.80-2.90	8 10		=		
2.90-3.00 3.00-3.10	12 14		109.32 - 3.00		
3.10-3.10	14		109.32 3.00		
3.20-3.30 3.30-3.40	13 11		E		
3.40-3.50 3.50-3.60	10		100.00		
3.60-3.70	12 17		108.82 — 3.50		
3.70-3.80 3.80-3.90	20 21		E		
3.90-4.00	22		<u> </u>		
			108.32 — 4.00		
			<u> </u>		
			E		
			107.82 4.50		
			<u> </u>		
Remarks			107.32 5.00	Scale	e Logged
				(appro	Logged By
				1:25	
					re No. 6-07-20.DP04

	Gro	und Investigations www.gii.ie)		Site The (Quarter a	at Cityv	vest, C	ooldowi	Site The Quarter at Citywest, Cooldown Commons Phase 3								
Machine :	TECOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	111.87		Client DBFI	L								Job Numl 9766-0				
		Location 705032.1 E 727254.5 N	Dates 29/0	7/2020	Engine	eer								Shee				
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0	3	6			pth Inc	crement	t 21	24	27	30			
0.00-0.10	15		111.87	0.00									+	 	+			
0.10-0.20	14			- - -										<u> </u>	_			
0.20-0.30 0.30-0.40	10 5			- -														
0.40-0.50 0.50-0.60	3 4		111.37	- - - 0.50														
0.60-0.70	10		-	- -							1			-	+			
0.70-0.80 0.80-0.90	16 10			 - 									₩	-	_			
0.90-1.00 1.00-1.10	6 4		110.87	 1.00														
1.10-1.20	5		110.07	- - -														
1.20-1.30 1.30-1.40	5 7			 -										-	\top			
1.40-1.50 1.50-1.60	5 5		110.37	- - - - 1.50									+	-	+			
1.60-1.70	4		110.57	1.50 - -									+	-	+			
1.70-1.80 1.80-1.90	3 4			- - -									<u> </u>	<u> </u>	_			
1.90-2.00 2.00-2.10	4		400.07	- - -														
2.10-2.10	6		109.87	2.00 														
2.20-2.30 2.30-2.40	6 7			- - -									+		+			
2.40-2.50	10												+	-	+			
2.50-2.60 2.60-2.70	13		109.37	— 2.50 -														
2 70-2 80	21			- -														
2.80-2.90	22 27			- - -														
2.50 0.00			108.87	3.00											+			
				- -									+	-	+			
				- -											\perp			
			108.37	3.50														
				 - _														
				· -									+		+			
			107.87	4.00										-	+			
			-	_ _											╧			
				- -														
			107.37	4.50											T			
				- - -									+		+			
				- -					-				+	-	+			
			106.87	5.00									\perp	<u> </u>	_			
Remarks													Scale (approx)	Logg	jed			
													1:25	JM				
													Figure		<u>ر.</u>			
													9766-0)7-20.[DP05			

	Gro	und Investigations www.gii.ie	Ireland Ltd	Site Probe Number The Quarter at Citywest, Cooldown Commons Phase 3 DP06
Machine : T	ECOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground Level (mOD	DBFL Job Number 9766-07-20
		Location 705021.4 E 727265.8 N	Dates 29/07/2020	Engineer Sheet 1/1
Depth (m)	Blows for Depth Increment	Field Records	Level Depth (mOD)	Blows for Depth Increment 0 3 6 9 12 15 18 21 24 27 30
0.00-0.10	24		111.80 0.00	
0.10-0.20 0.20-0.30	15		-	
0.30-0.40	5			
0.40-0.50 0.50-0.60	5 5		111.30 - 0.50	
0.60-0.70	5		-	
0.70-0.80 0.80-0.90	9 9		E E	
0.90-1.00 1.00-1.10	9 8		110.80 1.00	
1.10-1.20	14		 - -	
1.20-1.30 1.30-1.40	14 10			
1.40-1.50 1.50-1.60	11 10		110.30 - 1.50	
1.60-1.70	8			
1.70-1.80 1.80-1.90	5 9		-	
1.90-2.00 2.00-2.10	12 14		109.80 - 2.00	
2.10-2.20	10		-	
2.20-2.30 2.30-2.40	9 7		=	
2.40-2.50 2.50-2.60	11 12		109.30 — 2.50	
2.60-2.70	13		109.30 2.30	
2.70-2.80 2.80-2.90	20 14			
2.90-3.00	20 25		-	
3.00-3.10 3.10-3.20	25		108.80 - 3.00	
0.10 0.20			<u> </u>	
			E	
			108.30 3.50	
			 - -	
			-	
			107.80 4.00	
			E E	
			107.30 4.50	
			 - -	
			<u>-</u>	
			106.80 5.00	
Remarks				Scale (approx) Logged
				1:25 JMD
				Figure No.
				9766-07-20.DP06

	Gro	und Investigations www.gii.ie	Site The Quarter at Citywes	3	Probe Numb					
Machine: TECOP 10 Method: Dynamic Probe		Cone Dimensions Diameter 43.7mm	Client DBFL			ob umber 66-07-20				
		Location 705016.2 E 727274.3 N	Dates 29/0	07/2020	Engineer		Sheet	Sheet 1/1		
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	Bl o	ows for Depth Inc	rement 18 21	24 2	27 :	30
0.00-0.10	13		111.65	0.00				+		+
0.10-0.20	10			 - 						<u> </u>
0.20-0.30 0.30-0.40	3			- -						
0.40-0.50 0.50-0.60	4 4		111.15	 - 0.50						T
0.60-0.70	4			- -				_		\vdash
0.70-0.80 0.80-0.90	5 8			 - 					-	_
0.90-1.00 1.00-1.10	9 8		110.65	 1.00						
1.10-1.20	9		110.00	- - -						
1.20-1.30 1.30-1.40	8 6		-	 - 						\vdash
1.40-1.50 1.50-1.60	6		110.15	- - - - 1.50						\vdash
1.60-1.70	5		110.15	— 1.50 - - -						\vdash
1.70-1.80 1.80-1.90	5 7			 						_
1.90-2.00 2.00-2.10	7		400.05	- 0.00						
2.10-2.10	9		109.65	2.00 						Г
2.20-2.30	6			- -						\vdash
2.30-2.40 2.40-2.50	6			- - -					-	\vdash
2.50-2.60	15		109.15	2.50 						
2.60-2.70 2.70-2.80	15 24		-	- - -						
2.70-2.80 2.80-2.90	25			 - 						
2.90-3.00 3.00-3.10	30 25		108.65	3.00				+-		30
				 - 				Τ_		\perp
				- - -						
			108.15	3.50						
				- - -						_
				- -						\vdash
			107.65	 4.00						L
				- -						
				 						T
			107.15	- 4.50						\vdash
			107110	- - -						_
				 - 						
			106.65	- 5.00						
Remarks	1	I	100.03	5.00				Scale (approx)	Logg	ed
								1:25 Figure	JM No .	D
									07-20.D)P07

Ground Investigations Ireland Ltd					Site The (Site The Quarter at Citywest, Cooldown Commons Phase 3										
Machine: TECOP 10 Method: Dynamic Probe		Cone Dimensions Diameter 43.7mm	Client DBFL			Job Number 9766-07-20										
		Location 705008.6 E 727286.2 N	Dates 29/0	7/2020	Engine	eer								Sheet 1/1		
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3	6		for De				24 2	27 :	30	
0.00-0.10	10		111.37	0.00									+		Ħ	
0.10-0.20	14			- -									 		<u> </u>	
0.20-0.30 0.30-0.40	7 4			- - -											L	
0.40-0.50 0.50-0.60	6 7		110.87	0.50			Н									
0.60-0.70	7		-	- - -											T	
0.70-0.80 0.80-0.90	8 11		-	- -									+-		-	
0.90-1.00 1.00-1.10	13 6		110.37	 1.00									<u> </u>		<u> </u>	
1.10-1.20	5			- -			1									
1.20-1.30 1.30-1.40	4 5			 - 												
1.40-1.50 1.50-1.60	5 5		109.87	 1.50											+	
1.60-1.70	4			- -									+		-	
1.70-1.80 1.80-1.90	4 7			- - -									<u> </u>		ļ.	
1.90-2.00 2.00-2.10	6 10		109.37	- - - - 2.00												
2.10-2.10	9		109.37	2.00 - - -												
2.20-2.30 2.30-2.40	9 7			 - 											+	
2.40-2.50	10			- -									+			
2.50-2.60 2.60-2.70	10		108.87	— 2.50 - -									_		<u> </u>	
2.70-2.80	17			- -												
2.80-2.90 2.90-3.00	20			 - 												
3.00-3.10	22		108.37	3.00											+	
3.10-3.20 3.20-3.30	24 25		-	 									\vdash			
3.30-3.40 3.40-3.50	25 21			 - 											<u> </u>	
3.50-3.60	30		107.87	3.50											30	
				- - -												
				- -									+		+	
			107.37	4.00									┼		<u> </u>	
			-	 - 											L!	
				- -												
			106.87	4.50												
				 											+	
				- -									 		<u> </u>	
			106.37	 5.00											L.	
Remarks													Scale (approx)	Logg	ed	
												-	1:25 Figure	JM No .	ח	
													9766-0) 7-2 0.D	P08	

Ground Investigations Ireland Ltd					Site The Quarter at Citywest Cooldown Commons Phase 3									Probe Number		
www.gii.ie					The Quarter at Citywest, Cooldown Commons Phase 3									DP09		
Machine: T	ECOP 10 Oynamic Probe	Cone Dimensions	Ground Level (mO	D) (Client DBFL										oer 7-20	
		Location	Dates 29/07/2020		Engineer										t 1	
Depth (m)	Blows for Depth Increment	Level Depth Blows for Depth Increment														
0.00-0.10	10	1 1010 11000100	0.00	- '	0	3	6	9	12	15	18 2	21	24 2	27	30	
0.10-0.20	14															
0.20-0.30 0.30-0.40	12 7		E													
0.40-0.50 0.50-0.60	8 7		0.50												\vdash	
0.60-0.70	14		- 0.50												-	
0.70-0.80 0.80-0.90	9 6		E													
0.90-1.00 1.00-1.10	10 10		1.00													
1.10-1.20	9															
1.20-1.30 1.30-1.40	6 5		E													
1.40-1.50 1.50-1.60	6 14														\vdash	
1.60-1.70	9															
1.70-1.80 1.80-1.90	7 8		-												\perp	
1.90-2.00 2.00-2.10	11 17		2.00													
2.10-2.20	10															
2.20-2.30 2.30-2.40	10 13		E													
2.40-2.50 2.50-2.60	10 10		2.50												\vdash	
2.60-2.70	14														\vdash	
2.70-2.80 2.80-2.90	12 14		E												\perp	
2.90-3.00 3.00-3.10	20 29		3.00													
3.10-3.20	11															
3.20-3.30 3.30-3.40	12 12		E													
3.40-3.50 3.50-3.60	16 15		3.50												\vdash	
3.60-3.70	14														\vdash	
3.70-3.80 3.80-3.90	22 32		E												32	
3.90-4.00	25		4.00													
			-													
			E													
			4.50													
			-												\vdash	
			E												_	
			5.00													
Remarks													Scale approx)	Logg By	ed	
													1:25	JM	D	
													Figure I	No.		
													9766-0	7-20.D	P09	

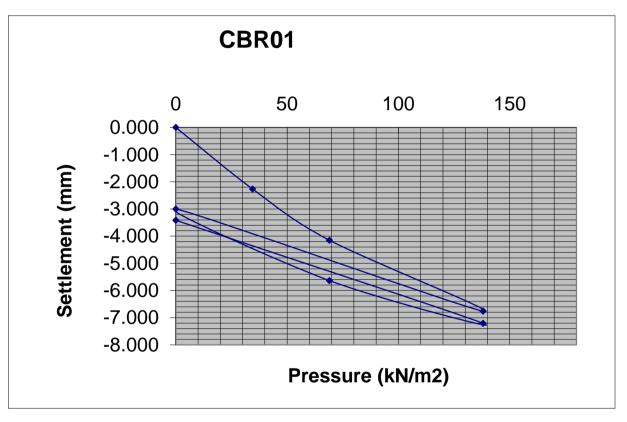
Ground Investigations Ireland Ltd www.gii.ie					The C		Probe Numb								
Machine : T	ΓΕCOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Client DBFL		Job Number 9766-07-20										
		Location			Engine		Sheet 1/1								
Donth	Playe for			07/2020	Blows for Depth Increment										
Depth (m)	Blows for Depth Increment	f Field Records	(mOD)	Depth (m)	0	3	6						24 2	27	30
0.00-0.10	16			0.00											T
0.10-0.20 0.20-0.30	21 20			_ -											\vdash
0.30-0.40	30														30
0.40-0.50 0.50-0.60	26 35			0.50											35
0.60-0.70	30														30
0.70-0.80 0.80-0.90	13 8			- -											\vdash
0.90-1.00 1.00-1.10	9 8			1.00											_
1.10-1.20	8			 _ 											
1.20-1.30 1.30-1.40	11 9			- -											
1.40-1.50 1.50-1.60	7 6			 _ 1.50											T
1.60-1.70	6			- - -											\vdash
1.70-1.80 1.80-1.90	7 4			 											_
1.90-2.00	5			- - - - 2.00											
2.00-2.10 2.10-2.20	12 32			2.00 _ 											32
2.20-2.30	23			<u></u> -											
2.30-2.40 2.40-2.50	9 7			- 											\vdash
2.50-2.60 2.60-2.70	7			2.50 											
2.70-2.80	14			- -											
2.80-2.90	12 14			 _ 											T
2.90-3.00 3.00-3.10	13			3.00											\vdash
3.10-3.20	8								Γ_						_
3.20-3.30 3.30-3.40	8 9			- -											
3.40-3.50	25			3.50											
				 - 											\vdash
				- -											_
				 4.00											
				- -											
				 _ 											T
				- - - - 4.50											\vdash
				-											_
				<u>-</u> 											
Remarks				5.00			-		-				Scale approx)	Logg By	±— ed
													1:25	JM	
												-	Figure		
													9766-0	7-20.D	P10

Ground Investigations Ireland Ltd www.gii.ie					Site The Quarter at Citywest, Cooldown Commons Phase 3									Probe Number		
Machine : 1	TECOP 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm		evel (mOD) 11.08	Client DBFL									Job Numb 9766-07		
		Location 704980.6 E 727314.7 N	Dates 29/07/2020		Engine		Sheet 1/1									
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	Blows for Depth Increment 0 3 6 9 12 15 18 21									27 3	30	
0.00-0.10	17		111.08	0.00	0	, ,	,	9			10 2	21 4	24 2	., 3		
0.10-0.20	30			-											30	
0.20-0.30 0.30-0.40	21 14		-	-												
0.40-0.50 0.50-0.60	10 8		110.58	- - 0.50												
0.60-0.70	7			-												
0.70-0.80 0.80-0.90	8 6		-	-												
0.90-1.00 1.00-1.10	8		110.08	- 1.00												
1.10-1.20	23			-												
1.20-1.30 1.30-1.40	22 9			-												
1.40-1.50 1.50-1.60	6 8		109.58	- 1.50												
1.60-1.70	14		<u>-</u>	_												
1.70-1.80 1.80-1.90	13 7			-												
1.90-2.00 2.00-2.10	5 10		109.08	- 2.00												
2.10-2.20	12			-												
2.20-2.30 2.30-2.40	11 12		-	-												
2.40-2.50 2.50-2.60	12 11		108.58	- - 2.50												
2.60-2.70	10		-	-												
2.70-2.80 2.80-2.90	8 8		-	-												
2.90-3.00 3.00-3.10	25 17		108.08	- 3.00												
3.10-3.20	18		100.00	-												
3.20-3.30 3.30-3.40	16 18			-												
3.40-3.50 3.50-3.60	20 18		107.58	- - 3.50												
3.60-3.70	25		107.38	- 3.30												
3.70-3.80	25		-	-												
			107.08	- 4.00												
			107.08	— 4.00 -												
				-												
			100.50	- 4.50												
			106.58	_ 4.50 -												
				-												
			100.00	-												
Remarks		I	106.08	5.00				1	<u> </u>	1	<u> </u>	;	Scale approx)	Logge By	⊨— ∍d	
													1:25	JME		
													Figure I		\dashv	
													9766-0	7-20.DI	P11	

APPENDIX 6 – Plate Bearing Test Results

Applied Load	Gauge settlement
0	0.000
34.5	-2.265
69	-4.15
138	-6.76
0	-3
69	-5.635
138	-7.205
0	-3.415

The Quarter at Citwest,


Cooldown Commons

LOCATION Phase 3 **CONTRACT NO.** 9766-07-20

DATE 29/07/2020 **CLIENT DBLF**

PLATE DIAMETER 457mm **NOTES** TEST NO. CBR01 **SAMPLES** Soft brown slightly sandy slightly gravelly CLAY with some rootlets. Gravel is subangular to rounded fine to coarse.

0.5m

MATERIAL

DEPTH

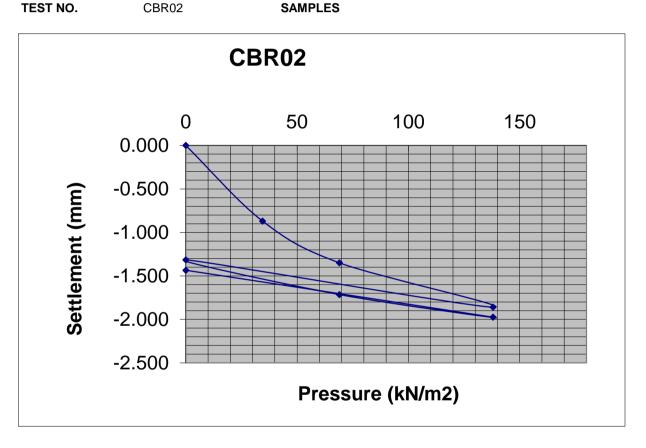
Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) = 11.23 MN/m2/m 17.69 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 0.64 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 1.40 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.87
69	-1.35
138	-1.86
0	-1.315
69	-1.715
138	-1.975
0	-1.435

The Quarter at Citwest,

Cooldown Commons


LOCATION Phase 3 **MATERIAL**

CONTRACT NO. 9766-07-20 **DATE** 29/07/2020

CLIENTDBLFDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR02SAMPL

Soft brown mottled grey slightly sandy slightly silty gravelly CLAY with some subangular cobbles. Gravel is subangular to subrounded fine to coarse.

0.5m

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =

34.54 MN/m2/m 116.56 MN/m2/m

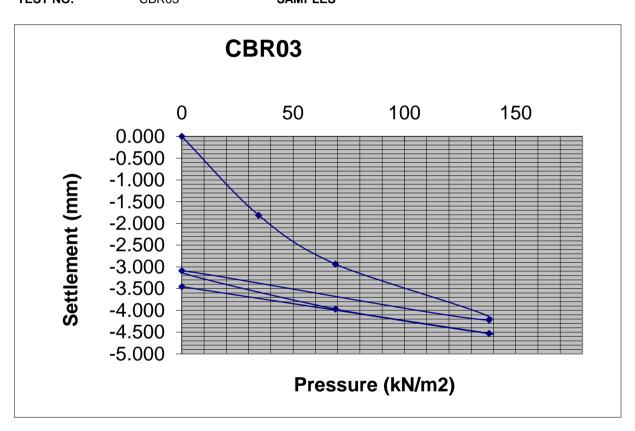
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 4.47 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 36.78 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.81
69	-2.935
138	-4.22
0	-3.09
69	-3.97
138	-4.53
0	-3.455

The Quarter at Citwest, Cooldown Commons

Phase 3

MATERIAL 9766-07-20


CONTRACT NO. DATE 31/07/2020

LOCATION

CLIENT DBLF DEPTH PLATE DIAMETER 457mm **NOTES SAMPLES** TEST NO. CBR03

Soft brown slightly sandy gravelly CLAY with some subangular to subrounded cobbles. Gravel is angular to subrounded fine to coarse.

0.5m

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) = 15.89 MN/m2/m 52.98 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 1.16 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 9.38 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.315
69	-0.785
138	-1.745
0	-0.84
69	-1.56
138	-1.915
0	-1.03

The Quarter at Citwest,

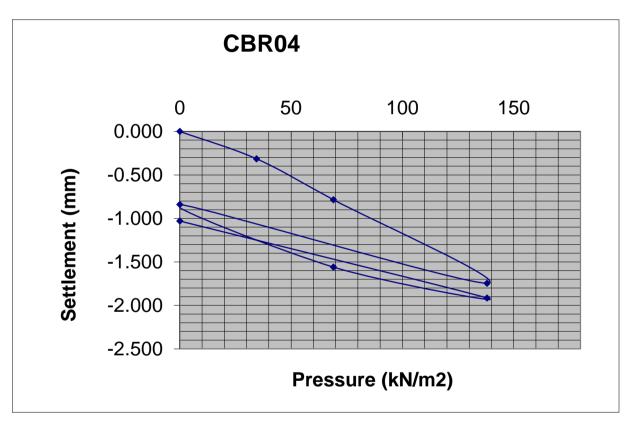
Cooldown Commons

Phase 3

9766-07-20

DATE 31/07/2020

LOCATION


CONTRACT NO.

CLIENT DBLF

PLATE DIAMETER 457mm NOTES
TEST NO. CBR04 SAMPLES

Soft to firm brown slightly sandy gravelly CLAY. Gravel is angular to subrounded fine to coarse.

0.5m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =

59.39 MN/m2/m 64.75 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 11.43 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 13.28 %

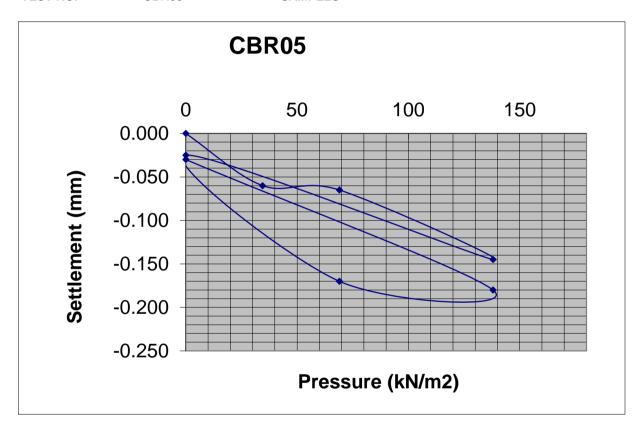
Applied Load	Gauge settlement
0	0.000
34.5	-0.06
69	-0.065
138	-0.145
0	-0.025
69	-0.17
138	-0.18
0	-0.03

The Quarter at Citwest,

Cooldown Commons

Phase 3

9766-07-20 31/07/2020


DATE **CLIENT DBLF**

LOCATION

CONTRACT NO.

PLATE DIAMETER 457mm **NOTES** TEST NO. CBR05 **SAMPLES** Soft brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse.

0.5m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (Initial) = 717.28 MN/m2/m Modulus of subgrade reaction, K (Reload) = 321.54 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 857.51 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 213.49 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.005
69	-2.815
138	-5.225
0	-1.675
69	-4.125
138	-5.605
0	-2.1

Soft brown slightly sandy slightly

subrounded fine to coarse.

gravelly CLAY. Gravel is subangular to

The Quarter at Citwest,

Cooldown Commons

Phase 3

9766-07-20

29/07/2020

DATE **CLIENT DBLF**

LOCATION

CONTRACT NO.

PLATE DIAMETER 457mm TEST NO. CBR06 **SAMPLES**

MATERIAL

0.5m

DEPTH NOTES

CBR06 0 50 100 150 0.000 -1.000 Settlement (mm) -2.000 -3.000 -4.000 -5.000 -6.000 Pressure (kN/m2)

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) = 16.56 MN/m2/m 19.03 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 1.25 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 1.59 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.39
69	-0.76
138	-1.245
0	-0.735
69	-1.05
138	-1.34
0	-0.82

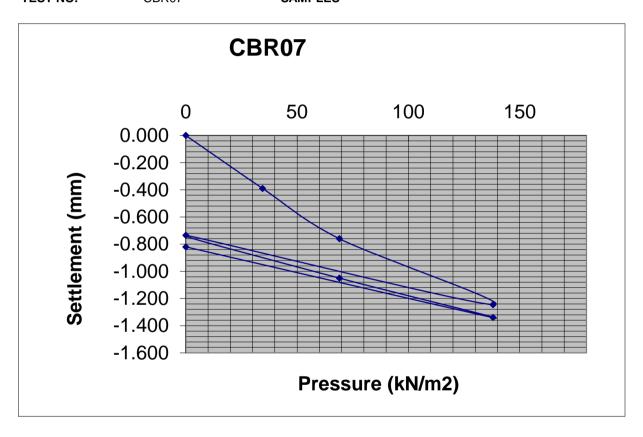
The Quarter at Citwest,

Cooldown Commons

Phase 3

9766-07-20

DATE 29/07/2020 **CLIENT** DBLF


LOCATION

CONTRACT NO.

CLIENTDBLFDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR07SAMPLES

MADE GROUND: Grey slightly clayey sandy angular to subangular fine to coarse Gravel.

0.5m

MATERIAL

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =

61.35 MN/m2/m 148.01 MN/m2/m

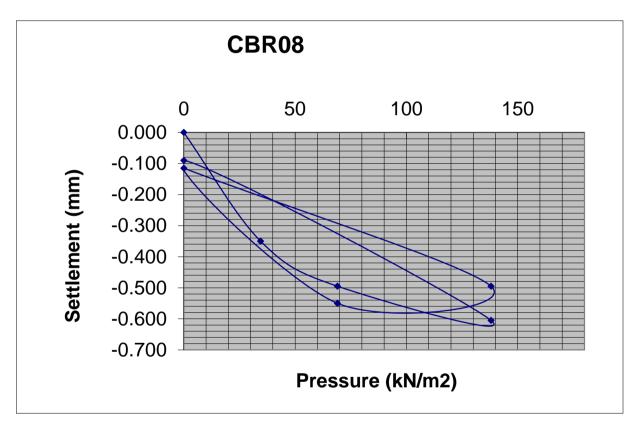
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 12.09 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 55.65 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.35
69	-0.495
138	-0.605
0	-0.09
69	-0.55
138	-0.495
0	-0.115

The Quarter at Citwest,

Cooldown Commons

LOCATION Phase 3
CONTRACT NO. 9766-07-2


9766-07-20 31/07/2020

DATE 31/07/2020 **CLIENT** DBLF

PLATE DIAMETER 457mm NOTES
TEST NO. CBR08 SAMPLES

Soft brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse.

0.5m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =

94.19 MN/m2/m 101.36 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 25.43 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 28.87 %

APPENDIX 7 – Borehole Records

		Grou	nd In		gations Ire	land	Ltc	d	Site The Quarter at Citywest, Cooldown Commons Pha	ase 3	N	orel lumi		
Machine : Dando 2000 & Beretta T44 Method : Cable Percussion & Rotary follow on					r ed to 6.50m d to 15.00m		Leve 111.8	el (mOD) 1	Client DBFL			Job Numb 9766-0		
	otary rollo	w on		n (dGPS 5163.2 E) 727230.1 N		4/08/2 6/09/2		Engineer				e t '2	
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thi	Depth (m) ickness)	Description	Legend	Water	In	nstr	
								(0.40)	Brown slightly sandy slightly gravelly CLAY	0.000				
0.50	В					111.41		0.40 (0.60)	Brown mottled grey slightly sandy slightly gravelly CLAY	0.000				
1.00 1.00-1.45	B SPT(C)) N=11			1,1/2,3,3,3	110.81		1.00 (0.30)	Firm brown mottled grey slightly sandy slightly gravelly CLAY with occasional subrounded cobble	0 <u>.0 .0</u>]]			1// 000
						110.51		1.30	Firm brown slightly sandy slightly gravelly CLAY	*******				00,00,000,00
2.00	В	. N. O			4.4/0.0.0	109.81		(0.70)	Firm dark gray alightly conductive to the CLAV with					00,00,000,000
2.00-2.45	SPT(C)) N=9			1,1/2,2,2,3			(1.00)	Firm dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	6 . O . O			300 months	0000000000
0.00								(1.00)		· · · · · · · · · · · · · · · · · · ·	•			000000000
3.00 3.00-3.32	B SPT(C)	50/165			17,20/10,17,23	108.81		3.00	Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			00000000000000000000000000000000000000	00,00,00,000
										\$.0 0 \$.0 0			00 80 04 00 00 00 00 00 00 00 00 00 00 00 00	00.000000000
4.00 4.00-4.44	B SPT(C)	50/285			6,10/10,15,15,10					\$ 5 0 0 0 0 0 0	▼ 1			000000000
					Water strike(1) at 4.20m, rose to 4.10m in 20 mins,					10 10 20 10 10 10 10 10 10			100 000 000 000 000 000 000 000 000 000	0,00,00,00,00
5.00 5.00-5.40	B SPT(C)) 50/245			sealed at 4.50m.			(3.50)		0 .0.0	:		200 000 000 000 000 000 000 000 000 000	00,00,000,00
										0 0 0 0	<u>;</u>	000000000000000000000000000000000000000		00000000000
6.00	В									0 .0 .0 0 .0 .0			600 0000000000000000000000000000000000	00000000000
6.00-6.32	SPT(C)	50/170 SCR	RQD	FI	5,11/15,25,10					0 0 0 0 0 0 0 0 0	<u>.</u>			0000000000
6.50						105.31		6.50	Poor recovery - recovery consists of: Brown/grey slightly sandy slightly clayey medium to coarse subangular to subrounded Gravel. Driller notes	\$ \frac{a}{2} \fra				000000000
	20							(1.50)	sandy gravelly CLAY (Very Stiff)	. <u>0 0</u> .0. 0 0 0 0			00000000000000000000000000000000000000	00,00,00,00,00
	20									\$ 5 0 0 0 0 0 0			10000000000000000000000000000000000000	00000000
8.00-8.45 8.00					5,6/6,7,8,8 SPT(C) N=29	103.81		8.00	Poor recovery - recovery consists of: Brown/grey slightly sandy clayey fine to coarse subangular to	6.04				0,00,00,00,00,0
									subrounded Gravel with occasional clay bands. Driller notes brown sandy gravelly CLAY (Very Stif	f) 10 10 10 10 10 10 10 10 10 10 10 10 10				00,00,000,00
	33									0 0 0 0 0 0	1			0000000000000
9.50-9.65					21,29/50 SPT(C) 50/0					\$\frac{1}{2}\frac{1}{2	<u>.</u>			00000000000
9.50										2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:	00000000000000000000000000000000000000	800 000 000 000 000 000 000 000 000 000	0000000000
Remarks Groundwate					I		\vdash			Scale (approx)	F	ogg	ed	.6
Rotary follow Complete at 50mm Stand bentonite se	15.00m B dpipe insta	GL lled in bor	ehole upo	n comple	tion, slotted from 15.	00m BGL t	to 1.0	0m BGL,	plain from 1.00m BGL to ground level with	1:50		AB	}	
										Figure N 9766-0).BH	101	

	Ground Investigations Ireland Ltd www.gii.ie								Site The Quarter at Citywest, Cooldown Commons Pha	Ni	orehole umber 8H01	
Flush : W	Beretta 144				Ground Level (mOD) 111.81			Client DBFL		Νι	ob umber 66-07-20	
Method : Cable Percussion & Rotary follow on				n (dGPS 5163.2 E	Dates 04/08/2020- 16/09/2020			Engineer		Sheet 2/2		
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thicknes	s)	Description	Legend	Water	Instr
11.00-11.08 11.00	23		_		50/50 SPT(C) 50*/75 50/0		(6.00))				
12.50-12.65 12.50	20		_		22,28/50 SPT(C) 50/0							
14.00-14.23 14.00	60				15,17/50 SPT(C) 50/75	97.81	14.0)	Poor recovery - recovery consists of: Brown/grey slightly sandy slightly clayey medium to coarse Gravel with many cobbles. Driller notes coarse GRAVEL with many cobbles and boulders (Dense)			
15.00 Remarks						96.81	15.0		Complete at 15.00m			ogged
										Scale (approx) 1:50 Figure N 9766-07	lo.	AB .BH01

		Grou	nd In		gations Ire w.gii.ie	Site The Quarter at Citywest, Cooldown Commons Phase 3				nole per 02			
Method : Ca	hine: Dando 2000 & Beretta T44 nod: Cable Percussion & Pomm cased to 7.50m 96mm cased to 15.00m Rotary follow on						Ground Level (mOD) Client 112.06 DBFL				N	ob umb 66-0	oer 7-20
	·		Location (dGPS 705155.4 E) 727216.4 N	05/08/2020- 17/09/2020			Engineer		S	heet	
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Level Depti (mOD) (m) (Thickne		Description		Water	In	str
0.50 1.00 1.00-1.45	B B SPT(C)	N=14			2,4/4,3,3,4	111.66 111.06		(0.40) 0.40 (0.60) 1.00 (0.70)	TOPSOIL Brown mottled grey slightly sandy gravelly CLAY with occasional subangular cobbles Firm to stiff brown mottled grey slightly sandy gravelly CLAY with occasional subangular cobbles	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00		20 0 4 00 4 00 6 00 00 00 00 00 00 00 00 00 00 00 0	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00	B SPT(C)	N=21			Water strike(1) at 2.00m, rose to 1.95m in 20 mins, sealed at 2.10m. 3,3/4,5,5,7	110.36 110.06	E	1.70 (0.30) 2.00	Firm to stiff dark grey slightly sandy gravelly CLA\ with occasional subangular cobbles, gravel is fine to coarse, angular to subangular Stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles, gravel is fine to coarse, angular to subangular	0.0.0 0.0.0 0.0.0	▼ 1		00 CH2 0 01 CO 00 CH2 0 01 CO 00 CH2 0 01 CO 00 CH2 0 CH2
3.00 3.00-3.45	B SPT(C)	N=26			6,6/6,6,7,7			(2.00)		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -
4.00 4.00-4.39	B SPT(C)	50/240			7,7/10,12,14,14	108.06		4.00	Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles, gravel is fine to coarse, angular to subangular	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 68 0 0 88 0 0 180 0 0 180 0 0 180 0 0 180 0 0 180 0 0 180 0 0 180 0 1
5.00 5.00-5.39	B SPT(C)	50/235			6,9/12,13,20,5			(2.50)		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,000 000 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.00 6.00-6.35	B SPT(C)	50/200			7,11/14,19,17			(3.50)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			000 000 000 000 000 000 000 000 000 00
7.00 7.00-7.20	B SPT(C)	50/45			15,20/20,30					0.0.0 0.0.0			
7.50 8.00-8.30 8.00	TCR 40	SCR	RQD	FI	12,12/17,33 SPT(C) 50/150	104.56		7.50	Very stiff dark grey slightly sandy gravelly CLAY with some cobbles and boulders. Gravel is fine to coarse, angular to subangular			2000 CO	2000 2000 2000 2000 2000 2000 2000 200
9.50-9.80 9.50	100		_		7,17/16,34 SPT(C) 50/150			(3.50)					
Remarks Groundwater Rotary follow 50mm Stand bentonite sea Chiselling fro	/ on from 7 pipe instal al and rais	'.50m BGI led in bore ed cover.	L ehole upo	n comple	tion, slotted from 7.50	m BGL to	1.001	m BGL, p	olain from 1.00m BGL to ground level, with	Scale (approx) 1:50 Figure N	No.	oggo y AB	

		Grou	nd In		gations Ire ww.gii.ie	land	Site The Quarter at Citywest, Cooldown Commons Phase 3			orehole umber 3H02	
Machine: Dando 2000 & Beretta T44 Flush: Water 200mm cased to 7.50m 96mm cased to 15.00m				r ed to 7.50m		Level (mOD) 112.06	Client DBFL		N	ob umber 66-07-20	
Method : Ca					n (dGPS) 5155.4 E 727216.4 N		/08/2020- /09/2020	Engineer			
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
11.00-11.45 11.00	60				8,9/10,12,14,12 SPT(C) N=48	101.06		Brown slightly clayey slightly gravelly fine to medium SAND			
	50				8,10/16,34	100.56		Poor recovery - recovery consists of: Grey slightly sandy slightly clayey fine to coarse angular to subangular Gravel. Driller notes Boulder Clay (Very Stiff)	0 0 0 0 0 0 0 0 0		
12.50-12.80 12.50	40				SPT(C) 50/150	99.56	(1.20)	Poor recovery - recovery consists of: Dark grey slightly sandy clayey fine to coarse angular to subangular Gravel with occasional cobbles. Driller notes Boulder Clay (Very Stiff)	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
14.00-14.23 14.00	40				4,25/50 SPT(C) 50/75	98.36	13.70	Poor recovery - recovery consists of: Grey/brown slightly clayey fine to coarse angular to subangula Gravel with occasional cobbles. Driller notes Gravel with cobbles (Dense)	r We × o		
15.00						97.06	15.00	Complete at 15.00m			
Remarks									Scale (approx)	L _C	ogged y AB
									Figure N 9766-0		.BH02

		Grou	nd In		gations Ire w.gii.ie	land l	Ltd		Site The Quarter at Citywest, Cooldown Commons Phase 3	Boreho Numbe BH0	er
Method : C	Beretta T47 Cable Percu	ıssion	20	Diamete 0mm to 7 mm to 15	7.70m	Ground 1	Level 112.45	` '	Client DBFL	Job Numbe 9766-07	
	vith Rotary (ollow on	Core		n (dGPS 5146.8 E) 727203.9 N	Dates 06	5/08/20	20	Engineer	Sheet 1/2	
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De ((Thic	epth m) kness)	Description	Legend	Water
0.50	В					112.15	E	(0.30) 0.30 (0.70)	FILL: Grey sandy fine to coarse angular Gravel (Crushed Rock Fill) Brown mottled grey slightly sandy gravelly CLAY with occasional subgrapher cobbles, Gravel is fine to coarse, appeals of subgrapher.	:	
1.00 1.00-1.45	B SPT(C)	N=12			1,2/2,3,3,4	111.45	Ē	1.00	angular to subangular Firm to stiff brown mottled grey slightly sandy gravelly CLAY	\$ -5-5 \$ -5-5 \$ -5-5	
					Water strike(1) at 1.50m, rose to 1.40m in 20 mins,			(1.00)	with occasional subangular cobbles, Gravel is fine to coarse, angular to subangular	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	▼ 1
2.00 2.00-2.45	B SPT(C)	N=14			sealed at 3.40m. 2,2/2,3,4,5	110.45		2.00 (1.00)	Firm to stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	00000000000000000000000000000000000000	
3.00 3.00-3.45	B SPT(C)	N=33			3,5/6,7,9,11	109.45		3.00	Very stiff dark brownish grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to	00000000000000000000000000000000000000	
4.00 4.00-4.45	B SPT(C)	N=4 9			4,5/9,11,14,15				coarse, angular to subangular		▼ 2
5.00 5.00-5.43	B SPT(C)	50/275			Water strike(2) at 5.00m, rose to 4.50m in 20 mins. 6,9/11,14,16,9			(4.70)			∇2
6.00 6.00-6.33	B SPT(C)	50/180			10,12/14,17,19						
7.00 7.00-7.31	B SPT(C)	50/160			14,16/17,24,9						
7.70 8.00-8.45 8.00	TCR 100	SCR	RQD	FI	7,9/11,11,13,14 SPT(C) N=49	104.75 104.45	E	7.70 (0.30) 8.00	Poor recovery - recovery consists of: Grey fine to coarse subangular Gravel of Limestone with cobble fragments. Drillers notes: Boulder CLAY (Very stiff)		
9.30-9.75	46				5,7/10,11,12,13 SPT(C) N=46				Recovery consists of: Very stiff grey/dark grey slightly sandy gravelly CLAY with occasional cobble fragments		
9.30	53							(3.20)			
Remarks Groundwate Rotary Core Borehole ba Chiselling fro	er encounte follow on f ackfilled upo om 7.70m t	red at 1.5 from 7.70r on comple to 7.70m f	Om BGL and BGL and BGL ion or 1 hour.	 and 5.00m	n BGL				Scale (approx) 1:50 Figure N 9766-0'	Logge By AB No. 7-20.BH0	

		Grou	nd In		gations Ire ww.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase	se 3	Boreho Numbe	r
Flush : W	eretta T47 /ater) &		Diamete 0mm to 7 mm to 15	r		Level (mOD) 112.45	Client DBFL		Job Numbe 9766-07-	
Core Dia: 68 Method : Control with forms		ussion Core		n (dGPS	5) 727203.9 N	Dates 06	6/08/2020	Engineer		Sheet 2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
10.30-10.75 10.30	100				7,10/12,11,13,14 SPT(C) N=50 5,4/9,8,10,9 SPT(C) N=36	101.25		Poor recovery - recovery consists of: Grey clayey fi	ne to		
11.20 12.70-13.15 12.70	25			4,6/9,7,10,8 SPT(C) N=34			Poor recovery - recovery consists of: Grey clayey fit coarse subangular to subrounded gravel of Limesto Drillers notes: Boulder CLAY (Very stiff)	one.			
14.00-14.45 14.00	26				5,7/9,11,13,10 SPT(C) N=43		(3.80)				
15.00	Sample		Casing Depth (m)	Water Depth (m)		97.45	15.00	Complete at 15.00m		· · · · · · · · · · · · · · · · · · ·	
15.00-15.45	SPT(C)	N=47			7,7/11,13,10,13						
Remarks								(Scale (approx)	Logged By	t
									Figure N		3

	Groui	nd In		gations Irel w.gii.ie	and I	Ltd		Site The Quarter at Citywest, Cooldown Commons Phase 3	Boreho Numbe	er
Machine : Da	ando 2000 able Percussion		Diamete			Level (mO 13.07	D)	Client DBFL	Job Numbe 9766-07	- 1
			n (dGPS) 5115.4 E	727189.3 N	Dates 05	/08/2020		Engineer	Sheet 1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	ss)	Description	Legend	Water
0.50 1.00-1.45 1.00	B SPT(C) N=11 B			2,3/3,2,3,3	112.87 112.37 112.07	(0.5 0.7 (0.3	0) -	TOPSOIL Brown slightly sandy slightly gravelly CLAY with occasional rootlets Brown mottled grey slightly sandy slightly gravelly CLAY Firm brown mottled grey slightly sandy slightly gravelly CLAY		
2.00-2.45 2.00	SPT(C) N=12 B			1,1/2,2,3,5	111.57 111.07 110.67	1.5	0) 0) 00 -	Firm brown slightly sandy gravelly CLAY with occasional subangular cobbles Firm to stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles Firm to stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles		
3.00-3.45 3.00	SPT(C) N=24 B			8,9/3,4,5,12	110.07	3.0	0 -	Stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles		
4.00-4.45 4.00	SPT(C) N=46 B			4,5/7,9,14,16	109.07	4.0	0	Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles		
5.00-5.37 5.00	SPT(C) 50/220 B			9,11/14,14,22 Water strike(1) at 5.20m, rose to 5.00m in 20 mins, sealed at 5.60m.						▼ 1 ∇ 1
6.00-6.38 6.00	SPT(C) 50/225 B			10,14/14,16,20						
7.00-7.34 7.00	SPT(C) 50/190 B			10,10/16,20,14		(6.0	0)			
8.00-8.30 8.00	SPT(C) 50/145 B			11,12/17,33						
9.00-9.28 9.00	SPT(C) 50/125 B			12,16/24,26						
10.00-10.24 Remarks	SPT(C) 50/85			14,22/34,16	103.07	10.	00	Scale	l ocac	d
Groundwater Complete at	encountered at 5.20 10.00m BGL kfilled upon complei							1:50 Figure	AB	

	Grou	nd In	vesti ww	gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Ph	ase 3	Boreho Numbe	er
Machine : D	ando 2000 able Percussion		Diameter			Level (mOD) 113.07	Client DBFL		Job Numbe 9766-07	
			n (dGPS) 5115.4 E	727189.3 N	Dates 05	5/08/2020	Engineer		Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
Remarks	В							Scale	Logge	d
								Scale (approx)	Logged By	
								Figure N 9766-07	l o. 7-20.BH04	4

S	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH05
	: Dando 2000 & Beretta T47 : Cable Percussion with Rotary Core	20	Diamete 0mm to 7 mm to 15	.00m		Level (mOD) 113.29	Client DBFL	Job Number 9766-07-20
	follow on		n (dGPS 5072.1 E) 727198 N		6/08/2020- 7/08/2020	Engineer	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Variet
					440.400	(0.80)	MADE GROUND: Brown mottled grey slightly sandy slightly gravelly Clay with fragments of concrete	
1.00 1.00-1.45	B SPT(C) N=10			1,1/2,3,2,3	112.49 112.29	→ (0.20)	Brown slightly sandy slightly gravelly CLAY with occasional subangular cobbles	0 10 10 00 0 10 10 00
1.00 1.10				1, 112,0,2,0		(1.00)	Firm brown slightly sandy slightly gravelly CLAY with occasional subangular cobbles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 2.00-2.45	B SPT(C) N=5			2,1/1,1,1,2	111.29	E	Soft brown slightly sandy slightly gravelly CLAY with occasional subangular cobbles	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0
						(1.00)		6 0 0 0 · 0 · V 1
3.00	В			Water strike(1) at 3.00m, rose to 2.80m in 20 mins, sealed at 3.30m.	110.29	3.00	Firm to stiff brown slightly sandy slightly gravelly CLAY with occasional subangular cobbles	6 2 4 V1
3.00-3.45 4.00 4.00-4.45	SPT(C) N=16 B SPT(C) N=32			2,3/4,4,4,4	109.59 109.29	(0.30)	Firm to stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	6 0 0 0 6 0 0 6 0 0 6 0 0
							Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	0 0 0 0 0 0 0 0 0
5.00 5.00-5.35	B SPT(C) 50/200			8,11/19,16,15				6 7 0 0 6 7 0 0 6 7 0 0 6 7 0 0
6.00 6.00-6.33	B SPT(C) 50/180			11,15/21,17,12				
7.00 7.00-7.21 7.00	TCR SCR	RQD	FI	16,23/50 B SPT(C) 50/60	106.29	7.00	Poor recovery - recovery consists of: Brown gravelly fine to coarse Sand. Drillers notes: Boulder CLAY (Very stiff) Rotary Core follow on from 7.00m BGL	0 10 0 0 70 0 0 70 0
	22			5,5/9,10,9,11		(1.30)	,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8.30-8.75 8.30	24	_		SPT(C) N=39	104.99	8.30	Poor recovery - recovery consists of: Grey fine to coarse subangular to subrounded gravel of Limestone with cobble fragments. Drillers notes: Boulder CLAY (Very stiff)	0 0 0
9.40-9.85 9.40		_		2,6/7,9,9,13 SPT(C) N=38				
Rotary Co	ster encountered at 3.0 ater encountered at 3.0 fore follow on from 7.00 backfilled upon comple from 7.00m to 7.00m f	n BGL	l		1		Scale (approx)	Logged By
							Figure I 9766-0	No. 7-20.BH05

		Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase		Borehole Number BH05
Flush :	eretta T47			Diamete Omm to 7 mm to 15	r		Level (mOD) 113.29	Client DBFL		Job Number 9766-07-20
Core Dia: m	able Percuith Rotary	ussion Core		n (dGPS 5072.1 E) 727198 N		5/08/2020- 7/08/2020	Engineer		Sheet 2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	-egend segend
11.10-11.55	17				1,1/5,7,9,12 SPT(C) N=33		(4.40)		.0	
11.10	27				9.10/25.25		- (4.40)		• • • • • • • • • •	
12.60-12.90 12.60	19				9,10/25,25 SPT(C) 50/150	100.59		Poor recovery - recovery consists of: Grey/brown gr fine to coarse Sand. Drillers notes: Boulder CLAY ar Sand. (Very stiff)	ravelly nd	
14.00-14.45 14.00	30		_		SPT(C) N=50	98.29		Complete at 45 00m		
	Sample	/ Tests	Casing Depth (m)	Water Depth (m)				Complete at 15.00m		
15.00-15.45	SPT(C)	N=50			6,7/12,13,16,9					
Remarks						1			Scale (approx)	Logged By
									1:50 Figure No. 9766-07-2	

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH06
E	Dando 2000 & Beretta T47	20	Diamete 0mm to 1	r 0.00m		Level (mOD 115.93	O) Client DBFL	Job Number 9766-07-20
V	Cable Percussion vith Rotary Core ollow on	Locatio	mm to 18 n (dGPS 5035.2 E			3/09/2020- 3/09/2020	Engineer	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend Safe
1.00-1.45	SPT(C) N=4 B			1,1/1,1,1,1			MADE GROUND: Brown slightly sandy slightly gravelly Clay (Stockpile)	
2.00-2.45 2.00	SPT(C) N=5 B			2,1/2,1,1,1				
3.00-3.45 3.00	SPT(C) N=5 B			7,2/1,1,1,2	113.23	2.70	subangular cobbles and rootlets. Gravel is fine to coarse, angular to subangular.	6 0 0 6 0 0
4.00-4.45 4.00	SPT(C) N=7			3,3/1,1,3,2	111.93	4.00	subangular cobbles and rootlets. Gravel is fine to coarse, angular to subangular.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00-5.45 5.00	SPT(C) N=38 B			7,9/11,9,9,9	110.93 110.73	(0.20) 5.20	Very stiff brown slightly sandy gravelly CLAY with some subangular cobbles and rootlets. Gravel is fine to coarse, angular to subangular. Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse,	6 7 4
6.00	B SPT(C) 50/265			Water strike(1) at 6.00m, rose to 4.50m in 20 mins, sealed at 8.00m. 5,13/13,13,14,10			angular to subangular	\$\partial \partial \par
7.00-7.29 7.00	SPT(C) 50/135 B			14,18/18,32		= - - - - - - - - - - - - - - - - - - -		0.04 0.04 0.04
8.00-8.28 8.00	SPT(C) 50/125 B			16,16/25,25				6 0 4 0 0 0 0 0 0 0 0 0 0 0 0
9.00-9.14 9.00	SPT(C) 46*/135 50/0 B			13,33/50		(4.80)		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10.00		4				<u> </u>		* 'a . 'A
Rotary Core	er encountered at 6.0 follow on from 10.00 ackfilled upon comple om 10.00m to 10.00r	Om BGI	ur.				Scal (appro	ox) By
Chiselling Tr	Om 10.00m to 10.00f	II IUI I NO	uI.					P AB re No. 66-07-20.BH06

Grou		igations Ire ww.gii.ie	land Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH06
Machine: Dando 2000 & Beretta T47 Flush: Water	Casing Diameter 200mm to 98mm to 18	10.00m	Ground Level (mOD) 115.93	Client DBFL	Job Number 9766-07-20
Core Dia: 68 mm Method: Cable Percussion with Rotary Core follow on	Location (dGPS 705035.2 E	S) E 727176.7 N	Dates 03/09/2020- 04/09/2020	Engineer	Sheet 2/2
Depth (m) (%) (%)	RQD (%) FI	Field Records	Level Depth (m) (Thickness)	Description	Legend Nate
10.00-10.16		\$PT(C) 50/10 20,30/50 3,3/7,7,10,11	105.93 10.00	Poor recovery - recovery consists of: Grey/brown slightly clayey fine to coarse angular to subrounded Gravel of Mixed Lithology. Drillers notes: Boulder CLAY (Very stiff)	
11.20-11.65		SPT(C) N=35 6,7/9,9,11,10	- (4.20)		0.000
12.20-12.65 12.20		SPT(C) N=39	(4.20)		
13.60-14.05 13.60 45	-	5,7/10,10,12,15 SPT(C) N=47 7,9/9,11,11,13 SPT(C) N=44	101.73 14.20		0.0000000000000000000000000000000000000
20				Poor recovery - recovery consists of: Grey fine to coarse angular to subrounded Gravel of Limestone. Drillers notes: Boulder CLAY (Very stiff)	
15.50-15.88	_	6,9/12,10,28 SPT(C) 50/225	(2.90)		
17.00-17.45 17.00	_	4,4/7,6,8,10 SPT(C) N=31	98.83 - 17.10	Poor recovery - recovery consists of: Grey/green Cobble	
18.00-18.03 18.00	-	25/50 SPT(C) 25*/30 50/0	97.93 (0.90)	and Boulder fragments of Limestone and Sandstone. Drillers notes: Boulder CLAY (Very stiff0 Complete at 18.00m	
Remarks Chiselling from 10.00m to 10.00r	n for 1 hour.			Scale (approx 1:50 Figure	AB

		Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons P	hase 3	Borehole Number BH07
Machine : D B	eretta T47		20	Diamete 0mm to 1 mm to 18	r 1.00m		Level (mOI 116.04	D) Client DBFL		Job Number 9766-07-20
W	ith Rotary		Locatio	n (dGPS			2/09/2020- 8/09/2020	Engineer		Sheet 1/2
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description		Legend segment
1.00 1.00-1.45	B SPT(C)	N=15			1,1/2,3,5,5		(3.30	MADE GROUND: Brown slightly sandy slightly g Clay with rootlets and fragments of plastic (Stock	ravelly pile)	
2.00 2.00-2.45	B SPT(C)	N=9			2,2/2,4,1,2		(3.30			
3.00 3.00-3.45	B SPT(C)	N=10			3,2/2,2,3,3	112.74	3.30	Firm light brown slightly sandy gravelly CLAY wit subangular cobbles and rootlets. Gravel is fine to angular to subangular.	h some o coarse,	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
4.00 4.00-4.45	B SPT(C)	N=8			1,2/2,2,3,1		(1.70))		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00 5.00-5.45	B SPT(C)) N=13			3,3/3,3,3,4	111.04	5.00	some subangular cobbles and rootlets. Gravel is coarse, angular to subangular.	AY with fine to	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.00 6.00-6.45	B SPT(C)	N=19			3,3/4,4,4,7	110.04	E	subangular cobbles. Gravel is fine to coarse, and subangular	occasional gular to	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.00 7.00-7.45	B SPT(C)	N=34			6,8/9,9,9,7	109.04		Very stiff dark grey slightly sandy gravelly CLAY occasional subangular cobbles. Gravel is fine to angular to subangular	with coarse,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8.00 8.00-8.41	B SPT(C)	50/255			11,14/10,16,10,14		(3.00			6.04. .0.04. .0.04.
9.00	TCR	SCR	RQD	FI	17,17/23,17,10 B		(3.00))		10 <u>10 0</u>
9.00-9.35 8.85	100		1		SPT(C) 50/200		<u> </u>			20.00 20.00
9.10	56				50/50					6 0 0 0 0 0 0
9.60 10.00-10.07 10.00					50/50 SPT(C) 50*/70 50/0		= = = = =			0 20 0 0 0 0
Remarks No groundwa Rotary Core Borehole bad	ater encou follow on t ckfilled upo	intered from 11.00 on comple)m BGL ion		В	•	•		Scale (approx) 1:50	Logged By
									_	io. 7-20.BH07

		Grou	nd In		igations Ire	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Pha	ase 3	Boreho Numbe	er
Machine : D B Flush : Core Dia: n	eretta T47	8		Diamete Omm to 18	11.00m		Level (mOD) 116.04	Client DBFL		Job Numbe 9766-07	
Method : C		ission Core	Location 705	•	S) E 727197.8 N		//09/2020- //09/2020	Engineer		Sheet 2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
11.00-11.07 11.00	29				50/50 SPT(C) 50*/70 50/0	106.04	10.00	Poor recovery - recovery consists of: Grey fine to subangular to subrounded Gravel of Mixed Litholo occasional cobble and boulder fragments. Drillers Boulder CLAY (Very stiff)	coarse gy with notes:		
11.00	45				5,5/9,11,11,9 SPT(C) N=40		(4.60)				
12.10	30				6,7/10,13,10,12		(4.60)				
13.20-13.65 13.40	38				SPT(C) N=45						
14.20-14.23 14.20					25/50 SPT(C) 25*/30 50/0						
14.60	100					101.44		Poor recovery - recovery consists of: Grey fine to angular to subrounded Gravel of Limestone with o cobble fragments. Drillers notes: Boulder CLAY (Vol. 1997)	ccasional		
16.10-16.55 16.10	26				3,3/9,9,11,13 SPT(C) N=42		(3.40)				
17.10-17.55 17.10	50				5,4/7,9,13,11 SPT(C) N=40		_				
18.00-18.45 18.00			_		3,6/6,8,7,9 SPT(C) N=30	98.04	18.00	Complete at 18.00m		· · · · · · · · · · · · · · · · · · ·	
Remarks Chiselling fro	om 11.00m	to 11.00m	n for 1 hou	ır.					Scale (approx)	Logge By	d
									1:50	AB	
									Figure N 9766-07	o. 2-20.BH0	7

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Ph	ase 3	N	orehole umber 3H08
Method : Ca	eretta T47 able Percussion	20	Diamete 0mm to 1 mm to 18	1.00m		Level (mOD) 116.81	Client DBFL		N	ob umber 66-07-20
	th Rotary Core llow on		n (dGPS 4994 E 7) 27176.4 N		1/09/2020- 2/09/2020	Engineer		SI	heet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
1.00-1.45 1.00	SPT(C) N=7 B			2,2/1,2,2,2		(2.80)	MADE GROUND: Brown slightly sandy slightly gravelly Clay with occasional subangular cobbles (Stockpile)			
2.00-2.45 2.00	SPT(C) N=6 B			3,2/1,1,2,2		(2.80)				
3.00-3.45 3.00	SPT(C) N=16 B			4,5/5,5,3,3	114.01 113.81	(0.20) 3.00	Soft to firm brown slightly sandy slightly gravelly CLAY Stiff brown slightly sandy slightly gravelly CLAY			
4.00-4.45 4.00	SPT(C) N=18 B			7,6/6,3,4,5	112.31	F	Stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to			
5.00-5.45 5.00	SPT(C) N=44 B			9,10/11,9,12,12	111.81	(0.40)	Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular to subangular Very stiff brown slightly sandy gravelly CLAY with occasional subangular to subangular Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine	00000000000000000000000000000000000000		
6.00-6.34 6.00	SPT(C) 50/190 B			7,7/17,19,14		<u>-</u>	to coarse, angular to subangular			
7.00-7.39 7.00	SPT(C) 50/235 B			14,15/21,16,12,1				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
8.00-8.31 8.00	SPT(C) 50/160 B			19,19/23,22,5				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
9.00-9.37 9.00	SPT(C) 50/220 B			3,11/15,12,23		(7.60)				2.00 - 2.
10.00-10.35	SPT(C) 50/200			16,17/21,20,9		<u> </u>		0 . 2 4 . 0 <u>-0 -</u> 0		
Rotary Core Slotted stand	ater encountered. follow on from 13.00 lpipe installed from e seal and a raised	18.00m B0	GL to 9.00	Om BGL with a pea g	ravel suro	ound, with a p	lain standpipe installed from 9.00m BGL to GL	Scale (approx) 1:50 Figure N		ogged Y AB
								9766-07		.BH08

		Grou	nd In		gations Ire	eland	Ltd	Site The Quarter at Citywest, Cooldown Commons Ph	ase 3	N	orehole lumber 3H08
Machine : Da	eretta T47		20	Diamete 0mm to 1 mm to 18	r 1.00m		Level (mOD) 116.81	Client DBFL		N	ob lumber 66-07-20
W	ith Rotary		Locatio	n (dGPS			1/09/2020- 2/09/2020	Engineer		s	heet 2/2
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00 11.00 11.00-11.21	B B SPT(C)) 50/60			30,21/50					· · · · · · · · · · · · · · · · · · ·	10 (10) (10
12.00 12.00-12.27	B SPT(C)) 50/115			22,24/32,18					+ + + + + + + + + + + + + + + + + + + +	
13.00 13.00-13.13 13.00	TCR	SCR	RQD	FI	38,50/50 B SPT(C) 88*/125 50/0	103.81	(1 20)	Poor recovery - recovery consists of: Dark grey clayey fine to coarse angular to subrounded Gravel of Mixed Lithology. Drillers notes: Boulder CLAY (Very stiff)	6 7 0		
14.20-14.65 14.20 15.00-15.45	46				4,7/9,9,12,10 SPT(C) N=40 7,9/11,13,11,10 SPT(C) N=45	102.61	14.20	Poor recovery - recovery consists of: Grey slightly clayey fine to coarse angular to subrounded Gravel of Mixed Lithology with occasional cobble and boulder fragments. Drillers notes: Boulder CLAY (Very stiff)	· · · · · ·		100 0 0 100 0 0 100 0 0 0 0 0 0 0 0 0 0
15.00	19				5,5/10,40 SPT(C) 50/75		(3.80)				
16.50-16.73 16.50	37				SPT(C) 50/75						10 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18.00-18.03 18.00					SPT(C) 25*/30 50/0	98.81	18.00	Complete at 18.00m	O T O O		
Remarks									Scale (approx)	F	ogged
									1:50 Figure I 9766-0		AB 0.BH08

Depth (m) Sample / Tests Casing Depth (m) Popth (m) Popt	Depth Sample / Tests Casing (R) Water Field Records Loyer Characteristics Loyer Lo	Be Method:Ca	ando 2000 & eretta T47 able Percussion th Rotary Core	20	Diamete 0mm to 8 mm to 15	.10m		Level (mOD) 14.35	Client DBFL	Job Numbe 9766-07-
100-145 SPT(C) N=14 2,33,3,4,4 113,38 1.00	Brown slightly sandy slightly gravelly CLAY Clay	fol	llow on				10.		Engineer	Sheet 1/2
1.00-1.45 SPT(C) N=14 2.33,3.4.4 113,36 1.00	00-1.45 SPT(C) N=14	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
100 B	00.2.37 SPT(C) 44/220 8,6/9,17,18 112.35 2.00 Very stiff brown slightly sandy gravely CLAY demonstration of the coarse, angular to subangular to coarse, angular to subangular to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular cobbies. Gravel is fine to coarse, angular to subangular to subangu						113.35			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 B	00-3 22 SPT(C) 50/70	.00	В					(1.00)	fine to coarse, angular to subangular	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-3.22 SPT(C) 50/70 B 12,15/50 4.00-4.38 SPT(C) 50/230 A 4,9/11,16,19,4 5.00-5.35 SPT(C) 50/200 B 5,11/17,19,14 5.00-6.35 SPT(C) 50/200 B 6,11/19,20,11 B 7.00-7.45 SPT(C) N=16 B 17,21/50 8.00-8.16 SPT(C) 50/10 B 17,21/50 SPT(C) 50/10 B 17,21/50 106.85 7.50 107.85 6.70 Madium danse brown slightly clayey gravelly fine to medium SAND. Gravel is fine to coarse, angular to subangular Very stiff greyish brown slightly gravelly sandy CLAY	0.0-4.38 SPT(C) 50/230 BPT(C) 50/230 A 4.9/11,16,19.4 (4.10) 0.0-5.35 SPT(C) 50/200 SP					8,6/9,17,18	111.75	(0.60)	to coarse, angular to subangular Very stiff dark grey slightly sandy gravelly CLAY with	10 10 00
5.00-5.35 SPT(C) 50/200 B SPT(00-6.35 SPT(C) 50/200					12,15/50				
5.00 B 5.00-6.35 SPT(C) 50/200 B 6,11/19.20,11 107.65 6.70 Medium dense brown slightly clayey gravelly fine to medium SAND. Gravel is fine to coarse, angular to subangular 7.00-7.45 B 7.00 8 SPT(C) N=16 B 106.85 7.50 Very stiff greyish brown slightly gravelly sandy CLAY	00-6.35 SPT(C) 50/200 B 6,11/19,20,11	.00	В					(4.10)		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100-7.45 SPT(C) N=16 B A,4/4,3,4,5 SPT(C) N=16 B SPT(C) 50/10 B SP	107.65 6.70 Medium dense brown slightly clayey gravelly fine to medium SAND. Gravel is fine to coarse, angular to subangular 106.85 7.50 Very stiff greyish brown slightly gravelly sandy CLAY Very stiff greyish brown slightly gravelly sandy CLAY 2.50 SPT(C) 50/10 B 17,21/50 Semarks obary Core follow on from 8.10m BGL prehel beackfilled upon compleion		SPT(C) 50/200 B			5,11/1/,19,14				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.00-7.45	00-7.45 SPT(C) N=16 B					6,11/19,20,11	107.65	6.70	Medium dense brown slightly clayey gravelly fine to	0.0.0 0.0.0 0.0.0
.00 B (2.50)	0.00 B Comparison of the state					4,4/4,3,4,5	106.85		subangular	
	Remarks o groundwater encountered otary Core follow on from 8.10m BGL orehole backfilled upon compleion	.00				17,21/50		(2.50)		
Remarks lo groundwater encountered Scale (approx) B	otary Core follow on from 8.1um BGL orehole backfilled upon compleion	Remarks	ater encountered	7		I	l			Logged

		Grou	nd In		gations Ire ww.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Pha	ter at Citywest, Cooldown Commons Phase 3				
Flush : W	eretta T47 /ater) &	20	Diamete 0mm to 8 mm to 15	r 8.10m		Level (mOD) 114.35	Client DBFL		Job Number 9766-07-2			
Core Dia: 68 Method : Ca wi fo				n (dGPS) 727192.5 N	Dates 10 11)/08/2020- /10/2020	Engineer		Sheet 2/2			
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend 5	Water		
11.00-11.45 11.00	30				SPT(C) N=37 5,5/9,11,9,8 3,2/6,6,8,7 SPT(C) N=27	104.35		Poor recovery - recovery consists of: grey/brown c fine to coarse angular to subrounded Gravel of Mix Lithology with occasional cobble fragments. Drillers Boulder CLAY (Stiff)	red				
12.10-12.55 12.10	15				6,7/9,11,10,9 SPT(C) N=39		(3.20)						
13.20-13.65 13.20	75				5,4/7,8,10,11 SPT(C) N=36	101.15	13.20	Recovery consists of: Very stiff brown slightly sand gravelly CLAY with occasional cobble and boulder fragments. Gravel is fine to coarse subangular to subrounded	у				
14.20-14.65 14.20					6,6/9,10,10,12 SPT(C) N=41		(1.80)			0.000			
	75					00.35							
15.00	Sample	/ Tests	Casing Depth	Water Depth		99.35	15.00 	Complete at 15.00m					
15.00-15.45	SPT(C)		(m)	(m)	5,7/8,11,12,10				Saala				
Kemarks									Scale (approx)	Logged By			
									Figure N				

	Grou	nd In		gations Ire	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Ph	ase 3	N	orel luml	
Machine: Da	ando 2000 able Percussion		Diamete 0mm to 9			Level (mOD) 114.29	Client DBFL		Job Numb 9766-0		
			n (dGPS 4942.7 E) 727211.9 N		/08/2020- /08/2020	Engineer		S	hee 1/	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	In	str
0.50	В						Stiff to very stiff brown slightly sandy slightly gravelly CLAY with occasional cobbles. Gravel is fine to coarse angular to subangular.	0.0.0 6.0.0 0.0.0 0.0.0			
1.00-1.45 1.00	SPT(C) N=25 B			3,4/5,6,7,7		(3.80)		0.0.0 0.0.0 0.0.0 0.0.0			
2.00-2.45 2.00	SPT(C) N=42 B			7,9/10,10,11,11				6.04.0			
3.00-3.45 3.00	SPT(C) N=43 B			5,8/10,10,11,12				0.000 0.000 0.000 0.000			2 20 20 20 20 20 20 20 20 20 20 20 20 20
4.00 4.00-4.45	B SPT(C) N=33			Water strike(1) at 3.80m, rose to 3.70m in 20 mins, sealed at 4.00m. 4,4/7,7,9,10	110.49	3.80	Very stiff brown sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse angular to subangular.	6 7 4	₹ 1	(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	్ రెక్టి చేస్తారు. అండ్వై స్ట్రామ్ క్లి క్లాన్ క్లాన్ క్లి క్లాన్ స్ట్రామ్ క్లి ప్రాస్త్వార్లు ఈ మైం మైం వై స్ట్రామ్ మైం మైం మైం మైం మైం మైం మైం మైం మైం మైం మైం మైం మైం మైం మైం
5.00-5.45 5.00	SPT(C) N=39 B			4,6/9,8,10,12		(3.00)		\$ 0.00	▼ 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.00-6.45 6.00	SPT(C) N=50 B			12,16/25,25 Water strike(2) at 6.30m, rose to 5.00m in 20 mins.	107.49			\$\frac{a}{a}, \frac{a}{a}, \frac{a}, \frac{a}{a}, a	∇2		00000000000000000000000000000000000000
7.00-7.45 7.00	SPT(C) N=50 B			16,16/16,25,9			Dense brown/grey slightly clayey sandy fine to coarse angular to subangular GRAVEL with frequent subangular cobbles.			000 000 000 000 000 000 000 000 000 00	00000000000000000000000000000000000000
8.00-8.45 8.00	SPT(C) N=50 B			10,10/26,24		(2.60)					2000 00 00 00 00 00 00 00 00 00 00 00 00
9.00-9.45 9.00	SPT(C) N=50 B			16,25/50	104.89	9.40	OBSTRUCTION due to possible boulder or bedrock. Complete at 9.40m			1000 000 000 000 000 000 000 000 000 00	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Refusal at 9.	r encountered at 3.8 40m BGL. Ipipe installed from 9				vel surrou	nd, with a plai	in standpipe installed from 1.00m BGL to GLwith	Scale (approx)		ogg	
a bentonite s Chiselling fro	eal and a raised cov om 9.40m to 9.40m f	er or 1 hour.	.23.	F 3.4		, F	in standpipe installed from 1.00m BGL to GLwith	1:50 Figure N 9766-0	lo.	3 & J).BH	

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Pha	se 3	Borehole Number BH11
Method : C	Pando 2000 & Beretta T47 Cable Percussion	20	Diamete 0mm to 8 mm to 15	r 3.10m		Level (mOD) 113.26	Client DBFL		Job Number 9766-07-20
	vith Rotary Core ollow on		n (dGPS 4986.6 E) 727203.1 N		2/08/2020- 8/08/2020	Engineer		Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kagend Name of the Land
0.50 1.00-1.45 1.00	B SPT(C) N=20 B			3,4/5,5,5,5	112.26	(1.00)	Brown slightly sandy gravelly CLAY with occasiona subangular cobbles. Gravel is fine to coarse, angul subangular Stiff brown slightly sandy gravelly CLAY with occas subangular cobbles. Gravel is fine to coarse, angul subangular		
2.00	B SPT(C) N=23			Water strike(1) at 1.90m, rose to 1.70m in 20 mins, sealed at 4.50m. 4,4/5,5,6,7		(1.80)			8 0 0 0 V1 8 0 0 V1 8 0 0 0 V1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-3.35 3.00	SPT(C) 50/200 B			8,10/15,20,15	110.46		Very stiff dark grey slightly sandy gravelly CLAY wit occasional subangular cobbles. Gravel is fine to coangular to subangular	th parse,	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00-4.45 4.00	SPT(C) N=45 B			5,7/9,11,11,14					
5.00-5.44 5.00	SPT(C) 50/285 B			4,10/12,14,16,8					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.00-6.37 6.00	SPT(C) 50/220 B			7,11/16,16,18					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.00-7.32 7.00	SPT(C) 50/170 B			11,15/19,23,8		(9.00)			8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8.00-8.08	SPT(C) 50*/80 50/0 B			30,20/50					
Rotary Core	er encountered at 1.9 follow on from 8.10 ackfilled upon comple om 8.10m to 8.10m f	m BGL						Scale (approx)	Logged By
Chiselling fr	oni 6. ium to 8.1um 1	ioi i nour.						1:50 Figure N 9766-07	AB lo. 7-20.BH11

		Grou	nd In		gations Irel w.gii.ie	land l	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH11
Method : Ca	eretta T47 able Percu	ıssion	20	Diamete 0mm to 8 mm to 15	r .10m		Level (mOD) 13.26	Client DBFL	Job Number 9766-07-20
fo	ith Rotary llow on	Core		n (dGPS 4986.6 E) 727203.1 N		/08/2020- /08/2020	Engineer	Sheet 2/2
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend Nater
11.80-12.25 11.80 12.80-12.83 12.80 13.90-14.35 13.90 15.00 15.00-15.45	TCR 43 36 44 Sample SPT(C)		RQD Depth (m)	Water Depth (m)	7,7/8,10,10,9 SPT(C) N=37 25/50 SPT(C) 25*/30 50/0 3,2/5,5,7,9 SPT(C) N=26	101.46	(1.00)	Complete at 15.00m Complete at 15.00m Complete at 15.00m	8 1
remarks								Scale (approx)	Logged By
								1:50	AB
								Figure 1 9766-0	No. 7-20.BH11

	Grou	nd In		gations Ire w.gii.ie	land	Ltd		Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH12
B Method : C	ando 2000 & eretta T47 able Percussion ith Rotary Core	20	Diamete 0mm to 1 mm to 15	0.00m	Ground	Leve 112.79	-	Client DBFL	Job Number 9766-07-20
	ollow on		n (dGPS 5010.1 E) 727210 N		/08/20 2/08/2		Engineer	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thi	epth (m) ckness)	Description	Legend Mater
0.50	В						(1.00)	Brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.00 1.00-1.45	B SPT(C) N=12			1,2/2,3,3,4 Water strike(1) at	111.79		1.00	Firm to stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	6
2.00 2.00-2.17	B SPT(C) 50/20			1.70m, no rise after 20 mins, sealed at 4.00m. 17,27/50	110.79		2.00 (0.60)	Stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3.00 3.00-3.45	B SPT(C) N=34			6,6/7,7,9,11	110.19		2.60	Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	
4.00 4.00-4.45	B SPT(C) N=50			5,7/11,11,14,14					
5.00 5.00-5.39	B SPT(C) 50/235			7,7/10,17,18,5			(6.00)		
6.00 6.00-6.36	B SPT(C) 50/210			9,14/17,19,14					
7.00 7.00-7.35	B SPT(C) 50/200			10,14/18,20,12					
8.00 8.00-8.29	B SPT(C) 50/135			10,16/23,27					0.0.0. ▼2 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
9.00 9.00-9.45	B SPT(C) N=34			Water strike(2) at 8.60m, rose to 8.00m in 20 mins. 6,7/7,8,8,11	104.19		8.60	Dense grey sandy medium to coarse angular to subangula GRAVEL with occasional subangular cobbles.	<u> </u>
9.70 18:88	TCR SCR	RQD	FI	В					2
Remarks Groundwate Rotary Core	r encountered at 1.7 follow on from 10.00 ckfilled upon comple om 1.80m to 2.30m f	Om BGL a Om BGL ion	and 8.60m	n BGL				Scale (approx	Logged By
Smacinity III	5 1.00III to 2.00III II	or rilour.						Figure	

		Grou	nd In		gations Ire w.gii.ie	land l	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	n Commons Phase 3				
Flush : W	eretta T47 ⁄ater) &		Diamete Omm to 1 onm to 15	r		Level (mOD) 112.79	Client DBFL	!	Job Numbe 9766-07			
Core Dia: 68 Method : Ca		ıssion	Locatio	n (dGPS)	Dates	/08/2020-	Engineer		Sheet			
wi	ith Rotary llow on		70	5010.1 E	727210 N		/08/2020			2/2			
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	!	Legend	Water		
11.10-11.55 11.10	27		_		SPT(C) N=50 7,9/10,11,14,15 7,8/10,10,12,13 SPT(C) N=45	102.79		Poor recovery - recovery consists of Grey fine to coarse angular to rounded GRAVEL of Limestone with occasion cobble and boulder fragments. Drillers notes: Boulder Cl (Stiff)	nal 🖪				
12.30-12.75	49				5,6/7,7,9,10 SPT(C) N=33								
12.30	72		_				(5.00)		•				
13.90-14.35 13.90	28		_		6,6/10,11,9,6 SPT(C) N=36								
	25						<u>-</u> - 						
15.00	Sample	/ Tests	Casing Depth (m)	Water Depth (m)		97.79	15.00	Complete at 15.00m					
15.00-15.20	SPT(C)	50/50	(m)	(m)	7,11/50								
Remarks									50 ure No	AB -20.BH1			

	Grou	nd In		gations Ire w.gii.ie	land	Ltd		Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH13
Method : C	eando 2000 & eretta T47 Cable Percussion vith Rotary Core	20	Diamete 0mm to 1 mm to 15	0.00m	Ground	Leve 112.8	` '	Client DBFL	Job Number 9766-07-20
	ollow on		n (dGPS 4957.5 E) 727233.4 N		3/08/2 1/08/2		Engineer	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thi	epth (m) ckness)	Description	Kate Market
0.50	В				112.75		0.10 (0.60)	FILL: Grey sandy coarse angular Gravel with angular cobbles (Crushed Rock Fill) Reddish brown slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to subangular	
					112.15	E	0.70 (0.30)	Stiff brown slightly sandy gravelly CLAY with some angular cobbles. Gravel is fine to coarse, anguler to subangular	6.0.0
1.00 1.00-1.45	B SPT(C) N=22			4,3/4,3,8,7	111.85		(1.00)	Stiff brown slightly sandy gravelly CLAY with some angular cobbles. Gravel is fine to coarse, anguler to subangular	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
2.00 2.00-2.45	B SPT(C) N=39			3,3/13,9,10,7	110.85		2.00	Very stiff brown slightly sandy gravelly CLAY with some angular cobbles. Gravel is fine to coarse, anguler to subangular	
3.00 3.00-3.45	B SPT(C) N=41			Water strike(1) at 2.50m, rose to 2.30m in 20 mins, sealed at 4.00m. 6,8/9,10,10,12			(1.80)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00 4.00-4.45	B SPT(C) N=45			7,9/10,11,11,13	109.05		3.80	Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse, angular to subangular	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00 5.00-5.45	B SPT(C) 50/295			6,9/11,12,12,15					
6.00 6.00-6.43	B SPT(C) 50/275			3,10/9,11,19,11					
7.00 7.00-7.39	B SPT(C) 50/235			6,10/12,14,19,5			(6.20)		
8.00 8.00-8.36	B SPT(C) 50/210			10,12/14,19,17					
9.00 9.00-9.34	B SPT(C) 50/190			7,11/16,22,12					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
9.60	TCR SCR	RQD	FI						6 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·
18:88	99			В					0 . 5 0 . 5
Remarks Groundwate Rotary Core	er encountered at 2.5 follow on from 10.00 ckfilled upon comple	Om BGL Om BGL ion						Scale (approx) 1:50 Figure	AB

		Grou	nd In		gations Ire ww.gii.ie	eland	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	3	Boreho Numbe	er
Flush : W	eretta T47 /ater) &	20	Diamete Omm to 1 mm to 15	0.00m		Level (mOD) 112.85	Client DBFL		Job Numbe	
Method : Co				n (dGPS 4957.5 E) 727233.4 N		5/08/2020- 5/08/2020	Engineer		Sheet 2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	ı	Legend	Water
11.00-11.45 11.00	50				SPT(C) 50/170 11,13/18,26,6 5,5/7,9,11,10 SPT(C) N=37	102.85	(2.50)	Poor recovery - recovery consists of: Dark grey/grey sl clayey fine to coarse angular to subrounded Gravel of Mixed Lithology. Drillers notes: Boulder CLAY (Very stif	;		
12.50-12.95 12.50	90				6,8/11,10,13,9 SPT(C) N=43	100.35	E E E E	Poor recovery - recovery consists of: Grey slightly clayslightly sandy fine to coarse angular to subrounded GRAVEL of Mixed Lithology with some cobble and bou fragments. Drillers notes: BOulder CLAY (very stiff)	yey :		
13.50-13.95 13.50					5,5/9,12,14,13 SPT(C) N=48		(2.50)		•		
45.00	41					97.85	<u>=</u> = = =		4		
15.00	Sample	/ Tests	Casing Depth (m)	Water Depth (m)				Complete at 15.00m			
15.00-15.45	SPT(C)	N=46	(m)	(m)	7,6/9,11,14,12						
Remarks									Scale oprox) 1:50	Logged By	d
								Fig	igure No		3

Method Cable Percussion Cashe Percussion Ca	Boreho Numbe BH1	Phase 3	Site The Quarter at Citywest, Cooldown Commons Phase 3		Lto	land	igations Ire ww.gii.ie		nd In	Grou	
Depth (rif) Sample / Tests Casing Dates 20/08/2020 21/08/202	Job Numbe 9766-07			` 1			7.50m	0mm to 7.	200	eretta T47 able Percussion	Bothod: C
D.50 B Drown slightly gravelly CLAY. Gravel is fine to coarse angular to subangular. 112.11 0.60 112.11 0.60 Stiff to very stiff brown slightly gravelly CLAY. Gravel is fine to coarse angular to subangular. SPT(C) N=20	Sheet 1/2		Engineer	20/08/2020-		20					
0.50 B 112.11 0.60 SPT(C) N=20	Legend		Description	epth (m) kness)	(Th	Level (mOD)	Field Records	Water Depth (m)	Casing Depth (m)	Sample / Tests	Depth (m)
10.0-1.45 SPT(C) N=20 B		vel is fine to	Brown slightly sandy slightly gravelly CLAY. Gravel is fine coarse angular to subangular.	(0.60)							
2.00-2.45 SPT(C) N=28 B 4.4/6,6,7,9	0.000 0.000	velly CLAY e angular to	Stiff to very stiff brown slightly sandy slightly gravelly CLA with occasional cobbles. Gravel is fine to coarse angular subangular.	0.60	1 <u>E</u>	112.11				В).50
100 SPT(C) N=28 B 4,4/6,6,7,9 Water strike(1) at 2.60m, rose to 2.00m in 20 mins, sealed at 5.00m. 7,7/8,8,10,9 5PT(C) N=35 SPT(C) N=42 B 6,8/8,11,11,12 6,8/8,11,11,12 5,5/6,6,7,10 107.31 5.40 Very stiff dark grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to subangular.				(2.00)			6,4/5,5,5,5			SPT(C) N=20 B	
Water strike(1) at 2.60m, rose to 2.00m in 20 mins, sealed at 5.00m. 7,7/8,8,10,9 SPT(C) N=35 SPT(C) N=42 B 6,8/8,11,11,12 5.40 Water strike(1) at 2.60m, rose to 2.00m in 20 mins, sealed at 5.00m. 7,7/8,8,10,9 (2.80) Wedium dense to dense brown clayey gravelly medium to coarse SAND with occasional subangular. (2.80) is fine to coarse angular to subangular. (2.80) Very stiff dark grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to subangular.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			(2.00)			4,4/6,6,7,9				
0.00-4.45 SPT(C) N=42 B		nedium to es. Gravel	Medium dense to dense brown clayey gravelly medium to coarse SAND with occasional subangular cobbles. Grave is fine to coarse angular to subangular.	2.60	1	110.11	2.60m, rose to 2.00m in 20 mins, sealed at 5.00m.			B SPT(C) N=35	
00-5.45 SPT(C) N=29 SPT(C) N=50 SPT(C) N=5				(2.80)			6,8/8,11,11,12			SPT(C) N=42 B	
00.6.45 SPT/C) NI=50 0.10/12.14.18.6 = -		y CLAY.	Very stiff dark grey slightly sandy slightly gravelly CLAY.	5.40		107.3 ⁻	5,5/6,6,7,10			SPT(C) N=29 B	
00-7.45 SPT(C) N=50 B 10,16/16,18,16 Rotary Core follow on from 7.50m BGL			Graver is line to course angular to subangular.				9,10/12,14,18,6				
			Rotary Core follow on from 7.50m BGL				10,16/16,18,16			SPT(C) N=50 B	
				(6.40)							
											lomarko
otary Core tollow on from 7.50m BGL	Logge By	Scale (approx)	Sca (appr						n BGL	follow on from 7.50n	roundwate
orehole backfilled on completion. hiselling from 7.50m to 7.50m for 1 hour. 1:50	AB & JN	1:50 Figure N							or 1 hour.	m 7.50m to 7.50m fo	hiselling fro

		Grou	nd In	d Investigations Ireland Ltd www.gii.ie				Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH14		
Method : C	eretta T47 able Percu	ıssion	20	Diamete 0mm to 7 mm to 15	r 7.50m		Level (mOD) 112.71	Client DBFL	Job Numbe 9766-07-		
	ith Rotary llow on	Core		n (dGPS 4970.8 E	727233.2 N		0/08/2020- 1/08/2020	Engineer	Sheet 2/2		
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	
11.80-12.25 11.80 12.80-12.83 12.80 13.80-14.25 13.80 15.00 15.00-15.45	35 37 61 Sample SPT(C)		Casing Depth (m)	Water Depth (m)	7,6/10,13,13,11 SPT(C) N=47 25/50 SPT(C) 25*/30 50/0 4,5/9,8,7,9 SPT(C) N=33	99.91 98.11 97.71	12.80 12.80 12.80 14.60 14.60 16.00	Poor recovery - recovery consists of: Grey very clayey slightly sandy fine to coarse angular to subrounded Gravel of Limestone. Drillers notes: Boulder CLAY (Very stiff) Poor recovery - recovery consists of: Grey fine to coarse subangular to subrounded Gravel of Limestone and Sandstone with occasional cobble and boulder fragments. Drillers notes: Boulder CLAY (very stiff) Poor recovery - recovery consists of: Grey very clayey slightly sandy fine to coarse subangular to subrounded Gravel of Limestone with occasional cobble and boulder fragments. Drillers notes: Boulder CLAY (Very stiff) Complete at 15.00m	Logged By	1	
								(approx	AB & JM		
								Figure			

	Grou	nd In		gations Ire w.gii.ie	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3	Borehole Number BH15	
B Method : C	eretta T47	20	Diamete Omm to 9 mm to 15	.30m		Level (mOD) 12.53	Client DBFL	Job Number 9766-07-20
	rith Rotary Core ollow on		n (dGPS 4991.9 E) 727238.8 N		/08/2020- /08/2020	Engineer	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Vate Published
					112.33	(0.20)	MADE GROUND: Crushed Rock Fill.	
0.50	В					= = = = = = = =	Firm to very stiff brown slightly sandy slightly gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse angular to subangular.	6.000 0.000 0.000 0.000
1.00 1.00-1.45	B SPT(C) N=13			1,2/2,3,4,4				0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
2.00 2.00-2.45	B SPT(C) N=33			3,4/6,7,9,11		(3.40)		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3.00 3.00-3.45	B SPT(C) N=39			6,7/7,10,11,11	108.93	3.60		6 0 0 0 0 0 0 0 0 0 0 0
4.00 4.00-4.45	B SPT(C) N=44			6,8/10,10,11,13			Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse angular to subangular.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5.00 5.00-5.45	B SPT(C) N=50			8,8/10,10,14,16				0 0 0 0 0 0 0 0 0 0 0 0
6.00 6.00-6.45	B SPT(C) N=50			12,25/37,13		(4.40)		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.00 7.00-7.45	B SPT(C) N=50			11,15/17,20,13				0.0.0 0.0.0 0.0.0 0.0.0 0.0.0
8.00 8.00-8.45	B SPT(C) N=50			10,16/22,26,2	104.53		Very stiff dark grey/brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse angular to subangular.	0 0 4 0 0 4 0 0 4 0 0 4 0 0 4
9.00 9.00-9.45 9.30-9.33 9.30	B SPT(C) N=50 TCR SCR	RQD	FI	25/50 SPT(C) 25*/30 14,17/29,21 50/0	103.23	9.30	Recovery consists of: Very stiff grey slightly sandy gravelly CLAY with some cobble and boulder fragments. Gravel is fine to coarse subangular to subrounded	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Remarks No groundw	ater encountered						Scale	Logged
Rotary Core Borehole ba Chiselling fro	ater encountered. follow on from 9.30r ckfilled upon comple om 9.30m to 9.30m f	n BGL tion or 1 hour.					(approx) 1:50 Figure N	AB & JMD
							9766-07	7-20.BH15

		Grou	nd In	vesti ww	gations Ire w.gii.ie	land	Ltd		Site The Quarter at Citywest, Cooldown Commons Ph	ase 3	Boreh Number	er		
Flush : W	eretta T47 /ater) &		Diamete Omm to 9 onm to 15	r	Ground	Leve l		Client DBFL		Job Numb 9766-07			
Core Dia: 68 Method : Ca wi fo				n (dGPS 4991.9 E) 727238.8 N		7/08/20 8/08/20		Engineer		Sheet 2/2			
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	D (Thic	epth (m) kness)	Description		Legend	Water		
10.80-11.25 10.80	53 89				5,5/9,8,11,13 SPT(C) N=41 7,7/11,9,9,14 SPT(C) N=43	101.73		10.80	Poor recovery - recovery consists of: Dark grey fill coarse angular to subrounded Gravel with some cand boulders fragments of predominately Limesto Drillers notes: Boulder CLAY (Very stiff)	ne to cobbles one.				
11.70 12.70-13.15 12.70	29		_		6,5/9,9,12,14 SPT(C) N=44									
14.00-14.45	25				5,9/11,11,13,15 SPT(C) N=50				(4.20					
14.00	36		_			97.53		15.00						
10.00	Sample	/ Tests	Casing Depth (m)	Water Depth (m)					Complete at 15.00m					
15.00-15.03	SPT(C) 50/0	25*/30			25/50									
Remarks	<u> </u>	1	1			1				Scale (approx)	Logge By	d		
										1:50 Figure N	AB & JN			

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3			ole er 6
Machine : Dar		Casing 200		r		Level (mOD) 112.00	Client DBFL		Job Numbe 9766-07	
		Location 704) 727260.2 N		7/08/2020- 8/08/2020	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
(m) 0.50 1.00-1.45	B SPT(C) N=13	Jepth (m)	Depth (m)	Water strike(1) at 0.30m, rose to 0.00m in 20 mins. 1,2/2,3,4,4	111.80	(0.20) - 0.20 - 0.20 	MADE GROUND: Crushed Rock Fill. Firm to very stiff brown slightly sandy slightly grave with occasional subangular cobbles. Gravel is fine coarse angular to subangular. OBSTRUCTION due to boulder Complete at 1.50m	_	2	
Remarks No groundwat Refusal at 1.50 Borehole back Chiselling from	er encountered. 0m BGL. filled on completion n 1.50m to 1.50m fo	n. or 1 hour.						Scale (approx) 1:50 Figure N	Logge By AB & JN lo. 7-20.BH1	MD

	Grou	nd In		gations Ire w.gii.ie		Site The Quarter at Citywest, Cooldown Commons Phase 3				hole ber 6A		
Machine : D Method : C	ando 2000 able Percussion		Diamete 0mm to 9		Ground	Level	(mOD)	Client DBFL		N	ob lumb	ber 17-20
		Locatio Ad	n jacent to	BH16		9/08/20 9/08/20		Engineer		S	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (Thic	epth m) kness)	Description	Legend	Water	In	str
				Water strike(1) at 0.40m, rose to 0.10m in 20 mins, sealed at 1.00m.			(0.30) 0.30	MADE GROUND: Crushed Rock Fill. Firm to very stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse angular to subangular.	6 0 0 0 6 0 0 0	▼ 1		
1.00-1.45	SPT(C) N=13			2,2/3,4,3,3					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*	00 00 00 00 00 00 00 00 00 00 00 00 00	300 400 300 000 000 000 000 000 000 000
2.00-2.45	SPT(C) N=29			5,5/6,7,7,9 Water strike(2) at 2.40m, rose to 2.20m in 20 mins, sealed at 3.00m.			(4.50)		6.0.0 6.0.0 6.0.0 6.0.0	▼ 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-3.45	SPT(C) N=50			6,11/11,14,16,9					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 00 00 00 00 00 00 00 00 00 00 00 00 0
4.00-4.45	SPT(C) N=50			7,11/11,11,14,14			4.80	Very stiff dark grey slightly sandy gravelly CLAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	000 000 000 000 000 000 000 000 000 00	200 000 000 000 000 000 000 000 000 000
5.00-5.45	SPT(C) N=50			6,7/12,15,23				Very stiff dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is fine to coarse angular to subangular.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*	05 07 00 00 00 00 00 00 00 00 00 00 00 00	ప్రత్యేక్షన్ నిల్లాలో ప్రక్టులు స్ట్రాల్ స్ట్రాల్ స్ట్రాల్లోన్ని స్ట్రాల్లోని స్ట్లాల్లోని స్ట్రాల్లోని స్ట్రాల్లోని స్ట్రాల్లోని స్ట్రాల్లోని స్ట్
6.00-6.45	SPT(C) N=50			7,9/14,16,16,4			(3.30)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, , ,	000 00 00 00 00 00 00 00 00 00 00 00 00	000 CO 5000 CO 000 CO 5000 CO 600 CO
7.00-7.45	SPT(C) N=50			7,11/17,24,9					6 0 4 0 0 0 4 0 0 0 4		00 PO 00 00 00 00 00 00 00 00 00 00 00 00 00	స్ట్రార్ట్లోని స్ట్రార్ట్లో ప్రాక్ట్లోని స్ట్రార్ట్లోని స్ట్టర్లోని స్ట్రార్ట్లోని స్ట్టర్ట్లోని స్ట్రార్ట్లోని స్ట్లోని స్ట్రార్ట్లోని స్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్లాన్ స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోన్ స్ట్లాన్ స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార్ట్లోని స్ట్రార
8.00-8.45	SPT(C) N=50			10,14/20,30			8.10 (1.30)	Very stiff dark grey/brown slightly sandy gravelly CLAY with occasional cobbles. Gravel is fine to coarse angular to subangular.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. ▼3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
9.00-9.45	SPT(C) N=50			11,24/38,12 Water strike(3) at 9.40m, rose to 8.00m in 20 mins.			9.40	OBSTRUCTION due to possible boulder or bedrock. Complete at 9.40m	10 10 10 10 10 10 10 10 10 10 10 10 10 1		500 000 000 000 500 000 000 000	00 00 00 00 00 00 00 00 00 00 00 00 00
Refusal at 9. Slotted stand a bentonite s	dpipe installed from seal and a raised cov	9.40m BG ver. Stand	L to 1.00r pipe dam		vel surrou	ınd, wit	h a plai	n standpipe installed from 1.00m BGL to GLwith	Scale (approx)		ogge Sy	
Chiselling fro	om 9.40m to 9.40m f	or 1 hour.							Figure N 9766-07		.BH1	6A

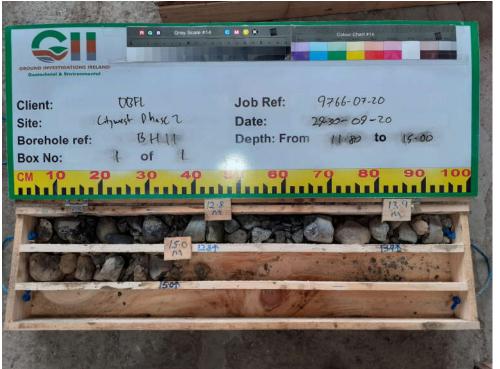
		Grou	nd In		gations Ire ww.gii.ie	Ltd	Site The Quarter at Citywest, Cooldown Commons Ph	ase 3	N	oreh umb	er	
Method : C	eretta T47 able Percu	ıssion	20	Diamete 0mm to 7 mm to 15	7.60m		Level (mOD) 112.00	Client DBFL		N	ob umb 66-07	er 7-20
	rith Rotary ollow on	Core		n (dGPS 4962.4 E) 727273.8 N	Dates 21 31	1/08/2020- 1/08/2020	Engineer		SI	heet 1/2	
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50 1.00 1.00-1.45	B B SPT(C)	N=17			2,3/3,4,5,5	111.60 111.20	(0.40)	MADE GROUND: Crushed Rock Fill with brown Clay. Firm to stiff brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to subangular. Stiff brown slightly gravelly sandy CLAY with occasional subangular cobbles. Gravel is fine to coarse angular to subangular.	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	▼ 1		
2.00 2.00-2.45	B SPT(C)	N=23			Water strike(1) at 1.80m, rose to 1.60m in 20 mins, sealed at 2.90m. 3,3/4,5,6,8	110.00	2.00	Stiff light brown slightly sandy slightly gravelly CLAY with occasional cobbles. Gravel is fine to coarse angular to subangular.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V .	00000000000000000000000000000000000000	250 0 25 0 25 0 25 0 25 0 25 0 25 0 25
3.00 3.00-3.45	B SPT(C)	N=46			7,10/10,11,11,14	109.10		Very stiff dark grey slightly sandy slightly gravelly CLAY with occasional subangular cobbles. Grave is fine to coarse angular to subangular.	0 0 0 0 0 0 0 0			80 0 00 00 00 00 00 00 00 00 00 00 00 00
4.00 4.00-4.45	B SPT(C)	N=50			7,7/12,13,17,8				\$ \frac{1}{2} \fra			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00 5.00-5.45	B SPT(C)	N=50			6,9/14,15,19,2				0.0.0 0.0.0 0.0.0 0.0.0			9 0,800 0 0,800 0 0 0 0 0 0 0 0 0 0 0 0 0
6.00 6.00-6.45	B SPT(C)	N=50			12,10/15,15,20				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 00 00 00 00 00 00 00 00 00 00 00 00	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.00 7.00-7.45	B SPT(C)	N=50			14,20/23,27		<u> </u>		0 0 0 0 0 0 0 0 0			
7.60	TCR 49	SCR	RQD	FI		104.40		Poor recovery - recovery consists of: Dark grey slightly clayey fine to coarse angular to subrounded Gravel of predominately Limestone with occasional cobble and boulder fragments. Drillers notes: Boulder CLAY (Very stiff) Rotary Core follow on from 7.60m BGL	6 · O · O · O · O · O · O · O · O · O ·			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8.60-9.05 8.60	40				5,7/9,11,11,9 SPT(C) N=40		(3.40)				0,000 0,000	ర్ట్లో రాష్ట్ర లో స్ట్రాన్ లో స్ట్రాన్లో రాష్ట్ర లో స్ట్రాన్ట్ లో స్ట్రాన్ లో స్ట్రాన్లో లో లో స్ట్రాన్లో లో స్ట్రాన్లో లో స్ట్రాన్లో లో స్ట్రాన్లో లో ల
Remarks Groundwate Rotary Core Slotted stand a bentonite s No SPT at 1	follow on f dpipe insta seal and a	from 7.60i lled from raised co	m BGL. 15.00m B0 ver		0m BGL with a pea g	ravel surro	ound, with a pl	ain standpipe installed from 2.00m BGL to GLwith	Scale (approx)		ogge y & JN	
Chiselling from	om 7.60m t	to 7.60m f	for 1 hour.	ius					Figure N 9766-07		.BH¹	17

		Grou	nd In		gations Ire ww.gii.ie	Ltd	Site The Quarter at Citywest, Cooldown Commons Phase 3			Borehole Number BH17	
Flush : W	eretta T47 /ater) &	20	Diamete 0mm to 7 mm to 15	r 7.60m		Level (mOD) 112.00	Client DBFL		N	ob lumber 66-07-20
				n (dGPS 4962.4 E	5) . 727273.8 N		/08/2020- /08/2020	Engineer		S	heet 2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.10-10.25 10.10 11.00 12.00-12.38 12.00 13.50-13.95 13.50 15.00 15.00-15.45	66 100 63 39 Sample SPT(C)		Casing Depth (m)	Water Depth (m)	SPT(C) 50/0 7,14/50 6,6/9,11,30 SPT(C) 50/225 7,5/9,11,11,13 SPT(C) N=44	101.00 100.00 99.80 98.50	11.00 11.00 12.00 12.20	Recovery consists of: Grey/brown graded Sand into Gravel with cobble and boulder fragments at base. Drillers notes: Boulder CLAY and blowing Sand (Very stiff) Recovery consists of: Grey fine to medium subrounded Gravel of Mixed Lithology. Drillers notes: Boulder CLAY (Very stiff) Recovery consists of: Very stiff brown slightly sandy gravelly CLAY with some cobble and boulder fragments. Poor recovery - recovery consists of: Dark grey slightly clayey fine to coarse angular to subrounded Gravel of Limestone with occasional cobble fragments. Drillers notes: Boulder CLAY (very stiff) Complete at 15.00m			
Remarks									Scale (approx)	AB	ogged y 3 & JMD
									Figure N 9766-0		BH17

BH03

BH03

BH06



BH07

BH09

BH11

BH12

BH13

BH14

Client: to the same of a man and a same of a man and a same of a s

BH17

BH17

APPENDIX 8 – Laboratory Results

National Materials Testing Laboratory Ltd. **SUMMARY OF TEST RESULTS** Index Properties Cell **Undrained Triaxial Tests** Particle Bulk Lab <425um BH/TP Depth sample Moisture Density LL PLЫ Density Presssure Compressive Strain at Vane Remarks Mg/m3 % % % Mg/m3 Stress kPa Failure % kPa No No. kPa TP01 10.8 34.8 21 15 2.00 6 TP04 3.00 В 14.1 13.2 29 20 9 TP06 В 13.0 41.9 23 16 7 2.10 В 42.2 9 TP09 1.00 12.6 26 17 17 BH11 2.00 13.9 42.5 25 8

1. All BS tests carried out using preferred (definitive) method unless otherwise stated.

NMTL 3295

Job ref No.

Location

9766-07-20

GII Project ID:

The Quarter Citywest Phase 3

Notes:

NMTL

NMTL LTD **The Quarter Citywest Phase 3** Contract: Unit 18c, Tullow Industrial Estate Client: **Ground Investigations Ireland Ltd** Tullow **Engineer: Conor Finnerty County Carlow GII Project ID** 9766-07-20 Tel: 00353 59 9180822 Date: 13/10/2020 Sb/Tch/Ms Checked: Вс Tested By: Mob: 00353 872575508 Job ref No. **NMTL 3295** billa@nmtl.ie High 50-70 Very High Extremely High Low Intermediate 70 0-35 70-90 90 + 35-50 60 Plasticity Index 50 40 30 20 10 0 60 20 40 80 100 120 0 **Liquid Limit**

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	94.7
37.500	88.1
28.000	84.0
20.000	83.6
14.000	79.1
10.000	76.7
6.300	71.9
5.000	66.7
3.350	62.0
2.000	54.8
1.180	47.6
0.600	38.8
0.425	34.8
0.300	31.3
0.212	28.3
0.150	25.9
0.063	22.1
0.056	21.2
0.040	18.5
0.020	14.3
0.011	10.6
0.008	9.7
0.005	8.8
0.004	7.9
0.002	6.0
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coars	e Fine Medium Coars	e Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
6.0	16.1	32.7	45.2	0.0	0.0

Sample Description Dark brown slightly sandy gravelly clayey SILT

Project No. BH/TP No. NMTL 3295 TP01

Ltd __

Operator

Project The Quarter Citywest, Phase 3

Tzr Checked Nc Approved Bc

GII Project ID-9766-07-20 Sample No.

Date sample tested 07/10/2020 Depth


B 2.0m

Sieve	%					
Size mm	Passing					
125.000	100.0					
75.000	100.0					
63.000	100.0					
50.000	93.0					
37.500	78.7					
28.000	70.4					
20.000	61.3					
14.000	54.6					
10.000	49.6					
6.300	40.7					
5.000	33.7					
3.350	27.0					
2.000	20.8					
1.180	16.8					
0.600	14.0					
0.425	13.2					
0.300	12.6					
0.212	12.0					
0.150	11.6					
0.063	10.5					
0.054	10.0					
0.038	9.4					
0.020	7.7					
0.010	6.4					
0.007	5.6					
0.005	4.7					
0.004	3.9					
0.002	3.0					
NM						

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium	Coarse F	ine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
	Silt		Sand			Gravel		
3.0	7.5		10.3			79.2	0.0	0.0

Sample Description Brown silty sandy GRAVEL.

Project No.
BH/TP No.

NMTL 3295 TP04

Ltd

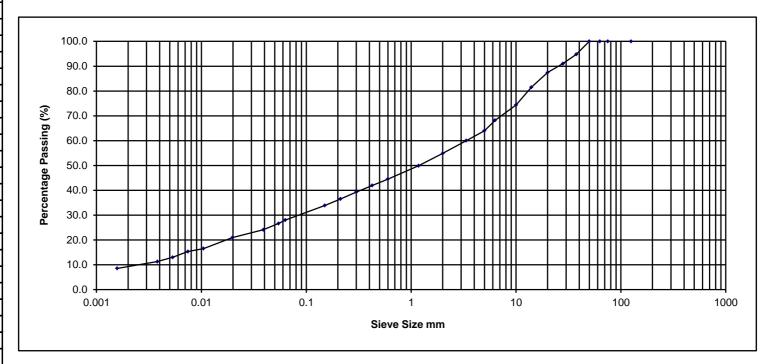
Operator

Project The Quarter Citywest, Phase 3

Tzr Checked Nc Approved Bc

GII Project ID-9766-07-20

Date sample tested 07/10/202


07-20 Sample No. 07/10/2020 Depth

B 3.0m

0	0/
Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	94.8
28.000	91.0
20.000	87.4
14.000	81.5
10.000	74.4
6.300	68.2
5.000	64.0
3.350	60.0
2.000	54.9
1.180	49.9
0.600	44.5
0.425	41.9
0.300	39.3
0.212	36.5
0.150	33.9
0.063	28.0
0.054	26.6
0.039	24.1
0.020	21.0
0.010	16.5
0.007	15.4
0.005	13.0
0.004	11.3
0.002	8.6
2.55	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

ſ	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
l	8.6		19.5	26.9			45.1	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3295 TP06

Project		The Quarter C	Citywest, Phase	e 3
Tzr	Checked	Nc	Approved	Вс

GII Project ID-9766-07-20

Date sample tested 07/1

07-20 Sample No. 07/10/2020 Depth

B 2.10m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	86.3
37.500	81.1
28.000	79.0
20.000	76.3
14.000	70.1
10.000	65.8
6.300	61.8
5.000	59.6
3.350	56.9
2.000	52.8
1.180	48.9
0.600	44.4
0.425	42.2
0.300	40.1
0.212	38.0
0.150	36.1
0.063	32.1
0.053	30.9
0.038	29.1
0.019	25.2
0.010	20.3
0.007	18.0
0.005	15.2
0.004	13.3
0.002	9.4

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium Co	oarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
9.4		22.7	20.7			47.2	0.0	0.0

Sample Description Brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No. NMTL 3295 TP09

Ltd

Operator

TL

NM

Project The Quarter Citywest, Phase 3

Tzr Checked Nc Approved Bc

GII Project ID-9766-07-20

Date sample tested 07/10

07-20 Sample No. 07/10/2020 Depth

B 1.0m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	89.6
37.500	83.9
28.000	78.7
20.000	75.8
14.000	73.3
10.000	70.0
6.300	65.3
5.000	61.2
3.350	57.5
2.000	52.3
1.180	48.3
0.600	44.4
0.425	42.5
0.300	40.5
0.212	38.4
0.150	36.3
0.063	31.7
0.053	30.2
0.038	27.5
0.020	22.4
0.010	17.9
0.007	16.0
0.005	14.2
0.004	12.3
0.002	8.6
NM	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Ī	Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
	8.6	23.2	20.6	47.7	0.0	0.0

Sample Description Brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3295 BH11

Ltd

Operator

TL

Project The Quarter Citywest, Phase 3

Tzr Checked Nc Approved Bc

GII Project ID-9766-07-20

Date sample tested 07/1

07-20 Sample No. 07/10/2020 Depth

B 2.00m

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Diarmaid MagLochlainn

Date: 17th August, 2020

Your reference: 9766-07-20

Our reference : Test Report 20/10462 Batch 1

Location: The Quarter, Citywest, Phase 3

Date samples received: 7th August, 2020

Status: Final report

Issue:

Nineteen samples were received for analysis on 7th August, 2020 of which nineteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie

Project Manager

Please include all sections of this report if it is reproduced $\label{eq:please} % \[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report : Solid

EMT Job No:	20/10462										_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS05	WS05	WS05	WS06	WS06	WS07	WS07	WS07	WS08	WS08			
Depth	0.70	1.70	2.70	0.70	1.70	0.70	1.70	2.70	0.70	1.70		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT											
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil	Soil											
Batch Number	1	1	1	1	1	1	1	1	1	1			
Date of Receipt			07/08/2020		07/08/2020		07/08/2020	07/08/2020	07/08/2020	07/08/2020	LOD/LOR	Units	Method No.
Antimony	1	1	1	1	<1	<1	1	1	2	2	<1	mg/kg	TM30/PM15
Arsenic #	7.5	15.2	7.7	12.9	12.9	6.5	13.6	15.0	17.4	12.5	<0.5	mg/kg	TM30/PM15
Barium #	32	43	56	41	28	15	49	42	77	56	<1	mg/kg	TM30/PM15
Cadmium#	1.8	1.4	1.3	2.0	1.0	1.0	1.6	2.1	2.0	1.9	<0.1	mg/kg	TM30/PM15
Chromium #	19.5	22.4	21.6	27.5	15.4	16.8	25.3	26.9	27.8	30.2	<0.5	mg/kg	TM30/PM15
Copper#	21	24	19	27	14	13	24	27	33	27	<1	mg/kg	TM30/PM15
Lead #	10	19	13	19	11	7	17	15	38	21	<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum #	1.5	1.6	1.5	1.8	0.9	1.1	1.7	2.4	2.5	2.6	<0.1	mg/kg	TM30/PM15
Nickel#	29.2	29.7	25.3	38.8	17.8	18.1	32.8	29.8	39.4	38.8	<0.7	mg/kg	TM30/PM15
Selenium#	<1	<1	1	<1	<1	<1	<1	<1	1	1	<1	mg/kg	TM30/PM15
Zinc [#]	73	92	75	97	53	43	92	87	138	103	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.14	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	0.15	<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	0.13	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.07	0.08	<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05	0.06	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.08	0.10	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8 TM4/PM8
PAH 6 Total [#] PAH 17 Total	<0.22 <0.64	0.30	<0.22 <0.64	mg/kg mg/kg	TM4/PM8								
Benzo(b)fluoranthene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.06	0.71	<0.04	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	0.03	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	102	92	97	101	93	102	99	97	96	93	<0	g/.tg	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report : Solid

EMT Sample No.													
-	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS05	WS05	WS05	WS06	WS06	WS07	WS07	WS07	WS08	WS08			
Depth	0.70	1.70	2.70	0.70	1.70	0.70	1.70	2.70	0.70	1.70	Diagon	e attached n	etee for all
COC No / misc												e attached n ations and a	
Containers	VJT												
Sample Date										28/07/2020			
-													
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt (07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020			110.
TPH CWG													
Aliphatics													
>C5-C6#	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8#	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	3.7	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10	4.0	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM38/PM8/PM12/PM16
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTDE#	∠F.	<u></u>							/ E	<u></u>		ua/ka	TM36/DM43
MTBE#	<5 <=	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene #	<5 <5	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Toluene #	<5 <5	128 <5	<5 <5	<5	ug/kg	TM36/PM12 TM36/PM12							
Ethylbenzene#		<5			<5 -5		<5			<5	<5	ug/kg	
m/p-Xylene #	<5	<5	<5 -5	<5	<5 -5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12 TM36/PM12
o-Xylene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TIVISO/FIVITZ
PCB 28#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 32	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report : Solid

EMT Job No:	20/10462										•		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS05	WS05	WS05	WS06	WS06	WS07	WS07	WS07	WS08	WS08			
Depth	0.70	1.70	2.70	0.70	1.70	0.70	1.70	2.70	0.70	1.70	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt				07/08/2020				07/08/2020		07/08/2020			No.
Natural Moisture Content	8.4	12.3	9.6	13.1	8.6	10.7	12.6	11.5	17.0	14.0	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	7.7	11.0	8.8	11.6	7.9	9.7	11.2	10.3	14.5	12.3	<0.1	70	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	19.5	22.4	21.6	27.5	15.4	16.8	25.3	26.9	27.8	30.2	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.18	0.27	0.24	0.17	0.17	0.09	0.16	0.29	1.72	0.36	<0.02	%	TM21/PM24
pH#	8.65	8.68	8.89	8.37	8.86	8.64	8.78	8.67	7.92	8.24	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.096	0.1022	0.1003	0.1037	0.1012	0.1007	0.1008	0.102	0.1379	0.1025		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
·													

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report : Solid

			I	I						I	1		
EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57				
Sample ID	WS08	WS09	WS09	WS09	WS10	WS13	WS13	WS13	WS17				
Depth	2.70	0.70	1.70	2.70	0.70	0.70	1.70	2.70	0.70		Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date				28/07/2020				28/07/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020		LODILOIT	Onio	No.
Antimony	2	2	1	2	1	1	<1	2	2		<1	mg/kg	TM30/PM15
Arsenic#	8.9	10.2	12.4	15.6	12.9	7.2	6.5	8.4	8.6		<0.5	mg/kg	TM30/PM15
Barium [#]	47	42	117	55	47	33	27	74	68		<1	mg/kg	TM30/PM15
Cadmium#	1.2	1.0	1.8	2.5	1.8	1.4	1.0	0.8	2.0		<0.1	mg/kg	TM30/PM15
Chromium #	47.0	47.0	26.1	36.5	32.6	18.0	19.1	40.4	22.4		<0.5	mg/kg	TM30/PM15
Copper#	26	21	22	21	27	20	15	26	26		<1	mg/kg	TM30/PM15
Lead [#]	21	14	19	18	29	12	11	12	12		<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM30/PM15
Molybdenum#	1.4	2.3	2.1	1.8	2.2	1.7	0.9	0.7	2.2		<0.1	mg/kg	TM30/PM15
Nickel [#]	38.3 1	30.4 <1	34.7 <1	40.1 <1	40.4 <1	19.6 <1	19.4 <1	47.3 <1	47.6 <1		<0.7 <1	mg/kg	TM30/PM15
Selenium [#] Zinc [#]	93	87	79	433	108	56	60	87	81		<5	mg/kg mg/kg	TM30/PM15
ZINC	93	07	79	433	106	50	60	07	01		\ 5	mg/kg	TIVISU/PIVITS
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Phenanthrene #	0.08	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Fluoranthene#	0.11	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Pyrene #	0.08	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	0.08	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06		<0.06	mg/kg	TM4/PM8
Chrysene #	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	0.11	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Coronene PAH 6 Total #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8 TM4/PM8
PAH 6 Total" PAH 17 Total	0.27 <0.64	<0.22 <0.64		<0.22 <0.64	mg/kg mg/kg	TM4/PM8							
PAH 17 Total Benzo(b)fluoranthene	0.08	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.04	<0.64		<0.64	mg/kg mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	100	99	96	92	96	94	95	96	96		<0	%	TM4/PM8
,						-							
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30		<30	mg/kg	TM5/PM8/PM16
		ĺ							I		1		

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report : Solid

EMT Job No:	20/10462												
EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57				
Sample ID	WS08	WS09	WS09	WS09	WS10	WS13	WS13	WS13	WS17				
Depth	2.70	0.70	1.70	2.70	0.70	0.70	1.70	2.70	0.70		Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020				
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1				
									07/08/2020		LOD/LOR	Units	Method No.
Date of Receipt	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020				
Aliphatics													
>C5-C6 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>C12-C16#	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C21-C35# >C35-C40	<7 <7		<7 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16								
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26		<26	mg/kg mg/kg	TM5/TM38/PM8/PM12/PM16
>C6-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12 TM5/PM8/PM16
>EC10-EC12# >EC12-EC16#	<0.2 <4	<0.2	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2		<0.2	mg/kg mg/kg	TM5/PM8/PM16
>EC16-EC21#	<7	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26		<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52	<52	<52	<52	<52	<52	<52	<52	<52		<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC25 >EC25-EC35	<10 <10		<10 <10	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16								
PE020-E000	10	110	110	110	10	110	110	110	110		110	mg/kg	TWIST WIGHT WITE
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
Ethylbenzene#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
m/p-Xylene#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 52 #	<5 <5		<5 <5	ug/kg ug/kg	TM17/PM8								
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 180#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35	<35	<35	<u> </u>	<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report : Solid

EMT Job No:	20/10462										_		
EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57				
Sample ID	WS08	WS09	WS09	WS09	WS10	WS13	WS13	WS13	WS17				
Depth	2.70	0.70	1.70	2.70	0.70	0.70	1.70	2.70	0.70		Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020				
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1				Method
Date of Receipt	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020		LOD/LOR	Units	No.
Natural Moisture Content	18.5	22.0	14.6	11.3	17.7	9.0	7.1	7.0	9.8		<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	15.6	18.1	12.7	10.1	15.0	8.3	6.7	6.6	8.9		<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		<0.3	mg/kg	TM38/PM20
Chromium III	47.0	47.0	26.1	36.5	32.6	18.0	19.1	40.4	22.4		<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.64	0.35	0.14	0.21	0.46	0.36	0.13	0.10	0.31		<0.02	%	TM21/PM24
pH#	7.70	8.29	8.45	8.59	8.00	8.60	8.72	8.82	8.70		<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1024	0.1118	0.1037	0.1015	0.101	0.0966	0.0983	0.0989	0.0987			kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09			kg	NONE/PM17
					l		l	<u> </u>		l			

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report: CEN 10:1 1 Batch

EWI JOD NO:	20/10462												
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS05	WS05	WS05	WS06	WS06	WS07	WS07	WS07	WS08	WS08			
Depth	0.70	1.70	2.70	0.70	1.70	0.70	1.70	2.70	0.70	1.70	Diagram		-4 fII
COC No / misc												e attached n ations and a	
Containers	VJT	VJT	VJT										
Sample Date				28/07/2020						28/07/2020			
Sample Type	Soil	Soil	Soil										
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020			No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic #	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0028	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.028	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.016	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.16	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07 <0.005	<0.07 <0.005	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17 TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	0.005 0.05	<0.005 <0.05	<0.005 <0.05	mg/l	TM30/PM17
Dissolved Lead (A10) # Dissolved Molybdenum #	0.003	0.004	0.009	0.008	0.008	0.003	0.005	0.014	0.03	0.013	<0.002	mg/kg mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.003	0.004	0.003	0.000	0.000	0.003	0.003	0.14	0.29	0.013	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.006	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	0.004	0.004	0.004	0.004	0.004	0.003	0.006	0.004	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	0.04	0.04	0.04	0.04	0.04	<0.03	0.06	0.04	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	0.4	<0.3	0.3	0.3	0.4	<0.3	0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	4	<3	3	3	4	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	0.6	1.3	1.2	<0.5	<0.5	<0.5	1.0	0.6	<0.5	<0.5	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	6	13	12	<5	<5	<5	10	6	<5	<5	<5	mg/kg	TM38/PM0
Chloride #	<0.3	0.7	1.1	0.7	8.0	1.0	8.0	0.7	3.8	1.1	<0.3	mg/l	TM38/PM0
Chloride #	<3	7	11	7	8	10	8	7	38	11	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	<2	4	5	4	3	3	3	51	4	<2	mg/l	TM60/PM0
Dissolved Organic Carbon Dissolved Organic Carbon	<20	<20	40	50	40	30	30	30	510	40	<20	mg/kg	TM60/PM0
pH	8.36	8.60	8.75	8.55	7.89	8.27	8.57	8.89	8.19	8.53	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	50	47	<35	36	44	47	41	<35	210	40	<35	mg/l	TM20/PM0
Total Dissolved Solids #	500	470	<350	360	440	470	410	<350	2101	400	<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report: CEN 10:1 1 Batch

EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57				
EWT Sample No.	31-33	34-30	37-39	40-42	43-43	40-40	49-51	52-54	55-57				
Sample ID	WS08	WS09	WS09	WS09	WS10	WS13	WS13	WS13	WS17				
Depth	2.70	0.70	1.70	2.70	0.70	0.70	1.70	2.70	0.70		Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020				
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020		LOD/LOR	Offics	No.
Dissolved Antimony#	0.004	0.003	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	0.04	0.03	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Arsenic #	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015		<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.013	0.006	0.007	0.003	0.013	0.004	0.004	0.006	0.006		<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.13	0.06	0.07	0.03	0.13	0.04	0.04	0.06	0.06		<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	0.004	0.005	<0.003	0.005	<0.003	<0.003	<0.003	<0.003	0.004		<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	0.04	0.05	<0.03	0.05	<0.03	<0.03	<0.03	<0.03	0.04		<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001		<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	mg/kg	TM61/PM0
vicious bissoived by OVAI	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001		0.0001	99	
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM26/PM0
	0			0	0	0			0			99	11112011 1110
Fluoride	<0.3	0.5	0.3	<0.3	0.3	<0.3	<0.3	1.1	0.4		<0.3	mg/l	TM173/PM0
Fluoride	<3	5	3	<3	<3	<3	<3	11	4		<3	mg/kg	TM173/PM0
	-	-	-	-	-	-	-		-		-		
Sulphate as SO4 #	1.1	0.5	1.4	0.5	0.9	0.7	0.6	0.7	0.9		<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	11	<5	14	<5	9	7	6	7	9		<5	mg/kg	TM38/PM0
Chloride #	0.9	1.1	0.6	0.8	1.2	0.6	0.5	0.5	0.5		<0.3	mg/l	TM38/PM0
Chloride #	9	11	6	8	12	6	5	5	5		<3	mg/kg	TM38/PM0
5.1101140	-		-	-		-	-	-	-		-	99	
Dissolved Organic Carbon	5	5	3	5	8	3	<2	<2	4		<2	mg/l	TM60/PM0
Dissolved Organic Carbon	50	50	30	50	80	30	<20	<20	40		<20	mg/kg	TM60/PM0
оН	8.41	8.48	8.38	8.50	8.44	8.64	8.87	8.94	8.55		<0.01	pH units	TM73/PM0
Fotal Dissolved Solids #	77	70	51	<35	90	<35	<35	35	<35		<35	mg/l	TM20/PM0
Fotal Dissolved Solids	770	700	510	<350	900	<350	<350	350	<350		<350	mg/kg	TM20/PM0
. S.a Diosoffed Jolius			0	300	- 30	500	300	-50	300		300	פייישייי	
	1	i	Ì	l		l	i	i	1	l	i		1

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3
Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

10-12 16-18 22-24 EMT Sample No. 4-6 13-15 19-21 25-27 28-30 WS05 WS06 WS07 WS07 Sample ID WS05 WS05 WS06 WS07 WS08 WS08 Depth 0.70 1.70 2.70 0.70 1.70 0.70 1.70 2.70 0.70 1.70

Please see attached notes for all

COC No / misc														abbrevi	ations and ad	cronyms
Containers	VJT															
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020						
	Soil															
Sample Type																
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020		reactive				No.
Solid Waste Analysis																
Total Organic Carbon #	0.18	0.27	0.24	0.17	0.17	0.09	0.16	0.29	1.72	0.36	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.128	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6#	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	0.30	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	0.71	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.028	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.16	<0.03	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury *	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.03	0.04	0.09	0.08	0.08	0.03	0.05	0.14	0.29	0.13	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03	0.04	0.04	0.04	0.04	0.04	<0.03	0.06	0.04	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	500	470	<350	360	440	470	410	<350	2101	400	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20	40	50	40	30	30	30	510	40	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.096	0.1022	0.1003	0.1037	0.1012	0.1007	0.1008	0.102	0.1379	0.1025	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	93.7	88.5	89.6	87.1	89.0	89.0	89.5	88.5	65.5	88.2	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.894	0.888	0.89	0.887	0.889	0.889	0.889	0.888	0.853	0.888	-	-	-		I	NONE/PM17
Eluate Volume	0.85	0.86	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-		I	NONE/PM17
																i i
pH#	8.65	8.68	8.89	8.37	8.86	8.64	8.78	8.67	7.92	8.24	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
									_						_	
Fluoride	<3	4	<3	3	3	4	<3	<3	<3	<3	-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4#	6	13	12	<5	<5	<5	10	6	<5	<5	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	7	11	7	8	10	8	7	38	11	800	15000	25000	<3	mg/kg	TM38/PM0
] [

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3
Contact: Diarmaid MagLochlainn

EMT Job No: 20/10462

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

40-42 43-45 46-48 52-54 EMT Sample No. 31-33 34-36 37-39 49-51 55-57 WS10 WS13 WS13 Sample ID WS08 WS09 WS09 WS09 WS13 WS17 Depth 2.70 0.70 1.70 2.70 0.70 0.70 1.70 2.70 0.70 COC No / misc

Please see attached notes for all abbreviations and acronyms

Containers	VJT														
							28/07/2020								
Sample Date	28/07/2020	28/07/2020		28/07/2020	28/07/2020	28/07/2020		28/07/2020	28/07/2020						
Sample Type	Soil														
Batch Number	1	1	1	1	1	1	1	1	1	Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020	07/08/2020		reactive				No.
Solid Waste Analysis															
Total Organic Carbon#	0.64	0.35	0.14	0.21	0.46	0.36	0.13	0.10	0.31	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6#	0.27	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate															
Arsenic#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.13	0.06	0.07	0.03	0.13	0.04	0.04	0.06	0.06	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	0.04	0.03	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	0.04	0.05	<0.03	0.05	<0.03	<0.03	<0.03	<0.03	0.04	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	770	700	510	<350	900	<350	<350	350	<350	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	50	50	30	50	80	30	<20	<20	40	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1024	0.1118	0.1037	0.1015	0.101	0.0966	0.0983	0.0989	0.0987	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	88.3	80.6	87.0	88.5	89.1	93.3	92.0	91.5	91.4	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.888	0.878	0.887	0.888	0.889	0.894	0.892	0.892	0.892	-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	8.0	0.8	0.8	-	-	-		I	NONE/PM17
pH #	7.70	8.29	8.45	8.59	8.00	8.60	8.72	8.82	8.70	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	5	3	<3	<3	<3	<3	11	4	-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	11	<5	14	<5	9	7	6	7	9	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	9	11	6	8	12	6	5	5	5	800	15000	25000	<3	mg/kg	TM38/PM0
															ļ ļ
															ļ ļ
															

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

	tact. Diamaid WagLochianin				
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
20/10462	1	WS05	0.70	1-3	No interpretation possible
20/10462	1	WS05	1.70	4-6	No interpretation possible
20/10462	1	WS05	2.70	7-9	No interpretation possible
20/10462	1	WS06	0.70	10-12	No interpretation possible
20/10462	1	WS06	1.70	13-15	No interpretation possible
20/10462	1	WS07	0.70	16-18	No interpretation possible
20/10462	1	WS07	1.70	19-21	No interpretation possible
20/10462	1	WS07	2.70	22-24	No interpretation possible
20/10462	1	WS08	0.70	25-27	No interpretation possible
20/10462	1	WS08	1.70	28-30	No interpretation possible
20/10462	1	WS08	2.70	31-33	No interpretation possible
20/10462	1	WS09	0.70	34-36	No interpretation possible
20/10462	1	WS09	1.70	37-39	No interpretation possible
20/10462	1	WS09	2.70	40-42	No interpretation possible
20/10462	1	WS10	0.70	43-45	No interpretation possible
20/10462	1	WS13	0.70	46-48	No interpretation possible
20/10462	1	WS13	1.70	49-51	No interpretation possible
20/10462	1	WS13	2.70	52-54	No interpretation possible
20/10462	1	WS17	0.70	55-57	No interpretation possible

Client Name: Ground Investigations Ireland

Reference: 20/07/9766

Location: The Quarter, Citywest, Phase 3
Contact: Diarmaid MagLochlainn

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/10462	1	WS05	0.70	2	11/08/2020	General Description (Bulk Analysis)	soil.stones
					11/08/2020	Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
					11/08/2020	Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS05	1.70	5	11/08/2020	General Description (Bulk Analysis)	soil.stones
					11/08/2020	Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
					11/08/2020	Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS05	2.70	8	11/08/2020	General Description (Bulk Analysis)	soil.stones
					11/08/2020	Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
					11/08/2020	Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS06	0.70	11	11/08/2020	General Description (Bulk Analysis)	soil/stones
					11/08/2020	Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
					11/08/2020	Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS06	1.70	14	11/08/2020	General Description (Bulk Analysis)	soil/stones
					11/08/2020	Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
					11/08/2020	Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS07	0.70	17	11/08/2020	General Description (Bulk Analysis)	soil/stones
					11/08/2020	Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
					11/08/2020	Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS07	1.70	20	11/08/2020	General Description (Bulk Analysis)	Soil/Stones
					11/08/2020	Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD

Reference: 20/07/9766

Location:The Quarter, Citywest, Phase 3Contact:Diarmaid MagLochlainn

Date Color Color							1	T
1	Job B	Batch	Sample ID	Depth	Sample		Analysis	Result
1006402 1	/10462	1	WS07	1.70	20	11/08/2020	Asbestos Type	NAD
2010462 1						11/08/2020	Asbestos Level Screen	NAD
Authority Auth								
Authority Auth	/10462	1	WS07	2 70	23	11/08/2020	General Description (Bulk Analysis)	Soil/Stones
Abbetion Abbetion	7.10.102			20	20			
2011-042								
2011-462 1								
2011-0462 1								
Machestor Mach						11/00/2020	Asbestos Level Screen	INAL
Machestor Mach	/40.400	1	WEOR	0.70	200	44/00/2020	Consul Resountion (Bully Analysis)	Cail/Change
March Marc	/10462	'	VV 300	0.70	20			
Map								
2010462 1								
20/10462 1								
NAD						11/08/2020	Asbestos Level Screen	NAD
NAD								
1108/2020	/10462	1	WS08	1.70	29	11/08/2020	General Description (Bulk Analysis)	soil.stones
NAD						11/08/2020	Asbestos Fibres	NAD
20/10462 1						11/08/2020	Asbestos ACM	NAD
20/10462 1 WS08 2.70 32 11/08/2020 Asbestos Fibres NAD NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos Type NAD NAD						11/08/2020	Asbestos Type	NAD
Abbestos Fibres NAD NAD						11/08/2020	Asbestos Level Screen	NAD
Machine Mach								
Manifestal	/10462	1	WS08	2.70	32	11/08/2020	General Description (Bulk Analysis)	soil.stones
NAD						11/08/2020	Asbestos Fibres	NAD
20/10462 1						11/08/2020	Asbestos ACM	NAD
20/10462 1						11/08/2020	Asbestos Type	NAD
Asbestos Fibres						11/08/2020	Asbestos Level Screen	NAD
Asbestos Fibres								
Map	/10462	1	WS09	0.70	35	11/08/2020	General Description (Bulk Analysis)	soil.stones
Asbestos Type						11/08/2020	Asbestos Fibres	NAD
Asbestos Type						11/08/2020	Asbestos ACM	NAD
11/08/2020								
20/10462 1								
Asbestos Fibres NAD NAD								
Asbestos Fibres NAD NAD	/10462	1	WS09	1 70	38	11/08/2020	General Description (Bulk Analysis)	Soil/Stone
Asbestos ACM				0	00			
11/08/2020 11/08/2020 Asbestos Type NAD NAD								
20/10462 1 WS09 2.70 41 11/08/2020 Asbestos Level Screen NAD								
20/10462 1 WS09 2.70 41 11/08/2020 General Description (Bulk Analysis) Soil/Stone								
11/08/2020 Asbestos Fibres NAD						11/00/2020	ASPESTOS FEAGI OCIGGII	שמאון
11/08/2020 Asbestos Fibres NAD	110400	1	Wenn	2.70	44	11/00/2022	Conoral Department (Bully Analysis)	Sail/Stana
11/08/2020 Asbestos ACM NAD	10402	1	VV OUS	2.10	41			
11/08/2020 Asbestos Type NAD NAD 11/08/2020 Asbestos Level Screen NAD NAD 11/08/2020 Asbestos Level Screen NAD								
20/10462 1 WS10 0.70 44 11/08/2020 Asbestos Level Screen NAD								
20/10462 1 WS10 0.70 44 11/08/2020 General Description (Bulk Analysis) Soil/Stone 11/08/2020 Asbestos Fibres NAD 11/08/2020 Asbestos ACM NAD 11/08/2020 Asbestos Type NAD							* *	
11/08/2020 Asbestos Fibres NAD 11/08/2020 Asbestos ACM NAD 11/08/2020 Asbestos Type NAD						11/08/2020	Asbestos Level Screen	NAD
11/08/2020 Asbestos Fibres NAD 11/08/2020 Asbestos ACM NAD 11/08/2020 Asbestos Type NAD								
11/08/2020 Asbestos ACM NAD	/10462	1	WS10	0.70	44	11/08/2020		Soil/Stone
11/08/2020 Asbestos Type NAD						11/08/2020	Asbestos Fibres	NAD
						11/08/2020	Asbestos ACM	NAD
11/08/2020 Asbestos Level Screen NAD						11/08/2020	Asbestos Type	NAD
						11/08/2020	Asbestos Level Screen	NAD
20/10462 1 WS13 0.70 47 11/08/2020 General Description (Bulk Analysis) Soil/Stone	/10462	1	WS13	0.70	47	11/08/2020	General Description (Bulk Analysis)	Soil/Stone
11/08/2020 Asbestos Fibres NAD						11/08/2020	Asbestos Fibres	NAD

Reference: 20/07/9766

Location: The Quarter, Citywest, Phase 3
Contact: Diarmaid MagLochlainn

Contac			Diamilaia				
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/10462	1	WS13	0.70	47	11/08/2020	Asbestos ACM	NAD
20/10/102	•		0.10	71		Asbestos Type	
						* *	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS13	1.70	50	11/08/2020	General Description (Bulk Analysis)	Soil/Stone
						Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
						Asbestos Type	NAD
						Asbestos Level Screen	NAD
					11/06/2020	ASDESIOS LEVEI SCIEBII	INAD
		1410.40					
20/10462	1	WS13	2.70	53		General Description (Bulk Analysis)	soil/stones
						Asbestos Fibres	NAD
					11/08/2020	Asbestos ACM	NAD
					11/08/2020	Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD
20/10462	1	WS17	0.70	56	11/08/2020	General Description (Bulk Analysis)	soil/stones
						Asbestos Fibres	NAD
						Asbestos ACM	NAD
						Asbestos Type	NAD
					11/08/2020	Asbestos Level Screen	NAD

Reference: 9766-07-20

Location: The Quarter, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/10462	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/10462

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/10462

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Diarmaid MagLochlainn

Date: 18th August, 2020

Your reference: 9766-07-20

Our reference : Test Report 20/10583 Batch 1

Location : The Quater, Citywest, Phase 3

Date samples received: 10th August, 2020

Status: Final report

Issue:

Twenty samples were received for analysis on 10th August, 2020 of which twenty were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced $% \left\{ \left(1\right) \right\} =\left\{ \left($

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10583

Report : Solid

EMT Job No:	20/10583												
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS04	WS11	WS11			
Depth	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70		e attached r	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	LOD/LOR	Units	No.
Antimony	4	2	2	2	2	1	2	2	1	2	<1	mg/kg	TM30/PM15
Arsenic#	8.6	9.7	11.2	10.7	16.2	9.3	11.3	12.6	8.4	9.4	<0.5	mg/kg	TM30/PM15
Barium [#]	40	64	106	54	69	32	48	46	28	38	<1	mg/kg	TM30/PM15
Cadmium#	1.8	1.8	3.3	2.1	2.6	2.0	2.0	1.6	1.8	1.6	<0.1	mg/kg	TM30/PM15
Chromium#	28.1	19.7	45.5	20.7	64.5	17.3	35.3	23.7	51.9	43.1	<0.5	mg/kg	TM30/PM15
Copper [#]	24	25	31	27	25	22	23	21	19	22	<1	mg/kg	TM30/PM15
Lead [#] Mercury [#]	15 <0.1	14 <0.1	15 <0.1	14 <0.1	18 <0.1	14 <0.1	15 <0.1	19 <0.1	15 <0.1	16 <0.1	<5 <0.1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Molybdenum#	2.6	2.2	2.4	2.3	1.8	1.6	1.4	2.1	1.6	1.4	<0.1	mg/kg	TM30/PM15
Nickel [#]	35.4	34.7	50.7	36.4	59.9	30.1	33.4	30.7	27.5	29.1	<0.7	mg/kg	TM30/PM15
Selenium #	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM30/PM15
Zinc#	77	86	90	85	103	74	85	85	79	80	<5	mg/kg	TM30/PM15
DALLMO													
PAH MS Naphthalene *	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	ma/ka	TM4/PM8
Acenaphthylene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06 <0.02	mg/kg	TM4/PM8 TM4/PM8										
Chrysene # Benzo(bk)fluoranthene #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 6 Total #	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene Benzo(j)fluoranthene	<0.02 <1	<0.02 <1	<0.02 <1	<0.02 <1	<0.02 <1	<0.02	<0.02 <1	<0.02 <1	<0.02 <1	<0.02 <1	<0.02 <1	mg/kg mg/kg	TM4/PM8 TM4/PM8
PAH Surrogate % Recovery	88	102	99	96	92	98	96	95	96	98	<0	//////////////////////////////////////	TM4/FM8
											-		
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16
		i.		i	i		<u> </u>			i	i	I	ı

Ground Investigations Ireland Client Name:

9766-07-20 Reference:

The Quater, Citywest, Phase 3 Location:

Diarmaid MagLochlainn Contact:

Report : Solid

EMT Job No:	20/10583	MagLooma											
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30]		
Sample ID	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS04	WS11	WS11			
Depth	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70	Please se	e attached r	notes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			
Date of Receipt				10/08/2020				10/08/2020		10/08/2020	LOD/LOR	Units	Method No.
TPH CWG	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020			
Aliphatics													
>C5-C6#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	0.1	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	0.3	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35# >C35-C40	<7 <7	<7	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	<7	<7 <7	<7 <7	<7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
Total aliphatics C5-40	<26	<7 <26	<26	<26	<26	<26	<26	<7 <26	<26	<26	<7 <26	mg/kg mg/kg	TM5/TM38/PM8/PM12/PM16
>C6-C10	0.1	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	0.3	<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2 <4	<0.2	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16									
>EC12-EC16	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene #	<5 <5	<5 <5	<5	<5 <5	<5 <5	ug/kg ug/kg	TM36/PM12						
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs*	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Ground Investigations Ireland Client Name:

9766-07-20 Reference:

The Quater, Citywest, Phase 3 Location:

Contact: Diarmaid MagLochlainn Report : Solid

EMT Job No:	20/10583												
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS04	WS11	WS11			
Depth	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020		Office	No.
Natural Moisture Content	9.8	13.2	13.0	14.1	14.6	14.7	13.4	12.2	8.4	9.4	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	8.9	11.6	11.5	12.4	12.7	12.8	11.8	10.9	7.7	8.6	<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	28.1	19.7	45.5	20.7	64.5	17.3	35.3	23.7	51.9	43.1	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.19	0.29	0.26	0.50	0.34	0.16	0.21	0.14	0.22	0.16	<0.02	%	TM21/PM24
Total Organio Carbon							-	-					
pH#	8.65	8.45	8.65	8.48	8.54	8.75	8.57	8.59	8.75	8.81	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.113	0.102	0.1028	0.102	0.1022	0.1002	0.1053	0.1033	0.098	0.0999		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
													1
													İ
				l			l	l	l	<u> </u>			

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10583

Report : Solid

EMT Job No:	20/10583												
EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	WS11	WS12	WS12	WS12	WS14	WS14	WS14	WS15	WS16	WS18			
Depth	2.70	0.70	1.70	2.70	0.70	1.70	2.70	0.70	0.70	0.70		e attached r	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	LOD/LOR	Units	No.
Antimony	<1	2	1	2	2	2	2	2	1	2	<1	mg/kg	TM30/PM15
Arsenic#	6.7	13.1	7.7	11.0	18.5	8.9	8.3	16.4	6.7	9.1	<0.5	mg/kg	TM30/PM15
Barium [#]	21	50	30	48	267	46	40	131	173	40	<1	mg/kg	TM30/PM15
Cadmium#	1.1	2.1	1.2	1.5	2.8	1.7	1.8	1.5	1.4	2.0	<0.1	mg/kg	TM30/PM15
Chromium#	25.0	27.5	28.6	25.0	86.7	46.7	43.7	45.5	33.8	34.0	<0.5	mg/kg	TM30/PM15
Copper [#]	13	31	15	20	26	16	20	22	9	25	<1	mg/kg	TM30/PM15
Lead [#] Mercury [#]	25 <0.1	16 <0.1	13 <0.1	18 <0.1	26 <0.1	18 <0.1	13 <0.1	21 <0.1	7 <0.1	14 <0.1	<5 <0.1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Molybdenum #	1.9	2.8	1.0	1.9	7.3	1.8	3.3	3.0	2.4	3.4	<0.1	mg/kg	TM30/PM15
Nickel [#]	20.4	43.6	21.5	30.1	40.1	24.0	41.0	40.4	16.2	29.4	<0.7	mg/kg	TM30/PM15
Selenium #	<1	1	<1	<1	3	<1	<1	<1	1	<1	<1	mg/kg	TM30/PM15
Zinc#	58	104	63	82	163	84	77	93	39	89	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03 <0.04	<0.03 <0.04	<0.03	<0.03 <0.04	<0.03	<0.03	<0.03 <0.04	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8 TM4/PM8
Anthracene # Fluoranthene #	<0.04	<0.04	<0.04	<0.04	<0.04 <0.03	<0.04	<0.04	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03	mg/kg mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene PAH 6 Total *	<0.04 <0.22	mg/kg mg/kg	TM4/PM8 TM4/PM8										
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	97	94	97	82	96	95	91	80	91	95	<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10583

Report : Solid

EMT Job No:	20/10583												
EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	WS11	WS12	WS12	WS12	WS14	WS14	WS14	WS15	WS16	WS18			
Depth	2.70	0.70	1.70	2.70	0.70	1.70	2.70	0.70	0.70	0.70		e attached n ations and a	
COC No / misc											abblevi	alions and a	Jonyms
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	LODILOIT	Onio	No.
TPH CWG													
Aliphatics													
>C5-C6#	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8#	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	4.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2 <4	<0.2	<0.2 <4	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16								
>C12-C16 * >C16-C21 *	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg mg/kg	TM5/PM6/PM16
>C16-C21 >C21-C35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TMS/TM36/PM8/PM12/PM16
>C6-C10	4.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2 <4	<0.2	<0.2	<0.2 <4	<0.2	<0.2	<0.2 <4	<0.2	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC12-EC16# >EC16-EC21#	<4 <7	<4 <7	<4 <7	<7	<4 <7	<4 <7	<7	<4 <7	<4 <7	<7	<4 <7	mg/kg mg/kg	TM5/PM8/PM16
>EC10-EC21 >EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene #	<5 <5	<5 <5	<5	<5	<5 <5	<5 <5	<5 <5	<5	<5	<5	<5 <5	ug/kg	TM36/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5 45	<5	<5	<5 -5	<5 -5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52#	<5 <5	ug/kg	TM17/PM8 TM17/PM8										
PCB 101# PCB 118#	<5 <5	ug/kg ug/kg	TM17/PM8										
PCB 118 PCB 138#	<5 <5	ug/kg ug/kg	TM17/PM8										
PCB 153 #	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8
												5.5	

Ground Investigations Ireland Client Name:

9766-07-20 Reference:

The Quater, Citywest, Phase 3 Location:

Contact: Diarmaid MagLochlainn Report : Solid

EMT Job No:	20/10583	MagLoonic											
EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	WS11	WS12	WS12	WS12	WS14	WS14	WS14	WS15	WS16	WS18			
Depth	2.70	0.70	1.70	2.70	0.70	1.70	2.70	0.70	0.70	0.70	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt													
Natural Moisture Content Moisture Content (% Wet Weight)	8.3 7.7	14.8 12.9	10.0 9.1	10.3 9.4	21.0 17.4	8.8 8.1	12.0 10.7	17.8 15.1	22.7 18.5	9.4 8.6	<0.1 <0.1	%	PM4/PM0 PM4/PM0
Moistare Content (70 Wet Weight)	7.7	12.3	3.1	3.4	17.4	0.1	10.7	10.1	10.5	0.0	40.1	70	1 101-471 1010
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	25.0	27.5	28.6	25.0	86.7	46.7	43.7	45.5	33.8	34.0	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.15	0.39	0.14	0.18	0.70	0.28	0.29	0.24	0.13	0.21	<0.02	%	TM21/PM24
pH#	8.84	8.51	8.89	8.76	7.86	8.72	8.60	8.48	8.41	8.71	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1	0.1122	0.099	0.1011	0.1018	0.0971	0.0978	0.1122	0.1046	0.0977		kg	NONE/PM17
Mass of dried test portion	0.09	0.1122	0.099	0.09	0.09	0.0971	0.0978	0.1122	0.09	0.0977		kg	NONE/PM17
·												,	

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10583

Report: CEN 10:1 1 Batch

EMT Job No:	20/10583										_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS04	WS11	WS11			
Depth	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	LOD/LOR	Units	No.
Dissolved Antimony#	0.003	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	0.03	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.006	0.009	0.007	0.003	0.005	0.006	0.005	0.006	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.06	0.09	0.07	0.03	0.05	0.06	0.05	0.06	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	0.5	0.3	0.5	0.3	0.4	0.3	0.6	0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	5	3	5	3	4	<3	6	3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	0.5	0.6	<0.5	0.6	<0.5	<0.5	2.5	2.3	0.7	0.7	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	5	6	<5	6	<5	<5	25	23	7	7	<5	mg/kg	TM38/PM0
Chloride #	0.3	0.3	<0.3	0.3	0.4	0.4	0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM38/PM0
Chloride#	3	3	<3	3	4	4	3	<3	<3	<3	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	3	2	3	<2	4	<2	3	2	<2	3	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	20	30	<20	40	<20	30	20	<20	30	<20	mg/kg	TM60/PM0
pН	8.13	8.39	8.24	8.22	8.40	8.36	8.26	8.43	8.31	8.11	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	41	43	<35	37	44	<35	67	55	42	46	<35	mg/l	TM20/PM0
Total Dissolved Solids #	410	430	<350	370	440	<350	670	550	420	460	<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/10583

Report: CEN 10:1 1 Batch

EMI JOD NO:	20/10583												
EMT Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	WS11	WS12	WS12	WS12	WS14	WS14	WS14	WS15	WS16	WS18			
Depth	2.70	0.70	1.70	2.70	0.70	1.70	2.70	0.70	0.70	0.70	Diagram		-4 fII
COC No / misc												e attached n ations and a	
Containers		VJT											
	-												
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020			
Sample Type	Soil		1										
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	LOD/LOR	Office	No.
Dissolved Antimony#	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) * Dissolved Copper *	<0.015 <0.007	mg/kg	TM30/PM17 TM30/PM17										
Dissolved Copper (A10)#	<0.007	<0.007	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/l mg/kg	TM30/PM17
Dissolved Copper (A10)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.002	<0.002	0.003	0.004	<0.002	0.007	0.006	0.002	0.004	0.008	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.02	<0.02	0.03	0.04	<0.02	0.07	0.06	0.02	0.04	0.08	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc #	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Diversit	-0.04	-0.04	.0.04	.0.04	.0.04	.0.04	.0.04	-0.04	.0.04	-0.04	-0.04		T1400/D140
Phenol	<0.01 <0.1	<0.01	<0.01 <0.1	<0.01 <0.1	<0.01	<0.01 <0.1	<0.01	<0.01	<0.01 <0.1	<0.01	<0.01	mg/l	TM26/PM0
Phenol	\0.1	<0.1	VO.1	VO.1	<0.1	VO.1	<0.1	<0.1	~ 0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	0.3	<0.3	<0.3	<0.3	<0.3	0.5	0.5	0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	5	5	3	<3	mg/kg	TM173/PM0
	-		-	-					-		-	3-3	
Sulphate as SO4 #	0.7	1.3	0.8	0.5	<0.5	<0.5	<0.5	0.9	1.0	<0.5	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	7	13	8	5	<5	<5	<5	9	10	<5	<5	mg/kg	TM38/PM0
Chloride #	<0.3	0.5	0.3	<0.3	0.4	0.4	0.4	0.7	0.5	0.3	<0.3	mg/l	TM38/PM0
Chloride #	<3	5	<3	<3	4	4	4	7	5	3	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	3	3	<2	<2	3	<2	<2	<2	<2	2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	30	<20	<20	30	<20	<20	<20	<20	20	<20	mg/kg	TM60/PM0
pH	8.48	8.12	8.64	8.42	7.91	8.41	8.51	8.32	7.76	8.30	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	47 470	42 420	42	43 430	39 390	45 450	38 380	71	65 650	47	<35 <350	mg/l	TM20/PM0 TM20/PM0
Total Dissolved Solids #	4/0	420	420	430	390	450	300	710	UCO	470	\350	mg/kg	TIVIZU/PINIU
	l	1	<u>I</u>	<u>I</u>	<u>I</u>	<u>I</u>	<u>I</u>	<u>I</u>		<u>I</u>			

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3
Contact: Diarmaid MagLochlainn

EMT Job No: 20/10583

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30
Sample ID	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS04	WS11	WS11
Depth	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70	0.70	1.70
COC No / misc										
Containers	VJT									
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020
Sample Type	Soil									
Batch Number	1	1	1	1	1	1	1	1	1	1
5. (5.).	40/00/0000	40/00/0000	40/00/0000	40/00/0000						

Please see attached notes for all abbreviations and acronyms

COC No / misc															ations and a	,
Containers	VJT															
Sample Date	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020	28/07/2020						
Sample Type	Soil															
Batch Number	1	1	1	1	1	1	1	1	1	1						
											Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020						
Solid Waste Analysis												_	_			
Total Organic Carbon #	0.19	0.29	0.26	0.50	0.34	0.16	0.21	0.14	0.22	0.16	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30 <0.22	500	-	-	<30	mg/kg	TM5/PM8/PM16 TM4/PM8									
PAH Sum of 6#											-	-	-	<0.22	mg/kg	
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.06	0.09	0.07	0.03	0.05	0.06	0.05	0.06	<0.02	<0.02	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead*	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	0.03	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	0.03	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	< 0.03	mg/kg	TM30/PM17
Zinc #	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	410	430	<350	370	440	<350	670	550	420	460	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	20	30	<20	40	<20	30	20	<20	30	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.113	0.102	0.1028	0.102	0.1022	0.1002	0.1053	0.1033	0.098	0.0999	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	79.4	88.1	87.5	88.1	87.7	89.5	85.5	87.3	92.2	89.6	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.877	0.888	0.887	0.888	0.887	0.889	0.885	0.887	0.892	0.89	-	-	-		- 1	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-		I	NONE/PM17
pH #	8.65	8.45	8.65	8.48	8.54	8.75	8.57	8.59	8.75	8.81	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1			<0.1		TM26/PM0
Phenoi	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TIVI26/PIVIU
Fluoride	5	3	5	3	4	<3	6	3	<3	<3	-	-	-	<3	mg/kg	TM173/PM0
	-	-	-	-		-	-	-						-		
Sulphate as SO4#	5	6	<5	6	<5	<5	25	23	7	7	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	3	3	<3	3	4	4	3	<3	<3	<3	800	15000	25000	<3	mg/kg	TM38/PM0

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3 Contact: Diarmaid MagLochlainn

31-33

34-36

37-39

40-42

43-45

46-48

EMT Job No: 20/10583 EMT Sample No.

Report: EN12457_2

52-54

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

55-57

58-60

WS12 WS12 WS14 WS14 WS14 WS15 WS18 Sample ID WS11 WS12 WS16 Depth 2.70 0.70 1.70 2.70 0.70 1.70 2.70 0.70 0.70 0.70 Please see attached notes for all

49-51

COC No / misc														abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date		28/07/2020				28/07/2020		28/07/2020		28/07/2020						
•	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Sample Type																
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020	10/08/2020		reactive				INO.
Solid Waste Analysis																
Total Organic Carbon#	0.15	0.39	0.14	0.18	0.70	0.28	0.29	0.24	0.13	0.21	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6#	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Arsenic* Barium*	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	20	100	300	<0.025	mg/kg mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.02	<0.02	0.03	0.04	<0.02	0.07	0.06	0.02	0.04	0.08	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	470	420	420	430	390	450	380	710	650	470	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	30	<20	<20	30	<20	<20	<20	<20	20	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1	0.1122	0.099	0.1011	0.1018	0.0971	0.0978	0.1122	0.1046	0.0977	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	89.6	80.5	91.2	88.7	88.1	92.7	91.6	80.3	86.4	91.8	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.89	0.878	0.891	0.889	0.888	0.893	0.892	0.878	0.886	0.892	-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-		I	NONE/PM17
pH#	8.84	8.51	8.89	8.76	7.86	8.72	8.60	8.48	8.41	8.71	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	5	5	3		_	_	<3	ma/ka	TM173/PM0
i iuonue	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 3	\3	\3	\3	\3	\3	υ	υ	3	-	-	-	\3	mg/kg	I IVI I / 3/PIVIU
Sulphate as SO4#	7	13	8	5	<5	<5	<5	9	10	<5	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	5	<3	<3	4	4	4	7	5	3	800	15000	25000	<3	mg/kg	TM38/PM0
Official	_	_	_	-					_	_				-		
								1			1					

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9766-07-20

Location: The Quater, Citywest, Phase 3

Contact: Diarmaid MagLochlainn

Contact			lagLocillalili	-	
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
20/10583	1	WS01	0.70	1-3	No interpretation possible
20/10583	1	WS01	1.70	4-6	No interpretation possible
20/10583	1	WS02	0.70	7-9	No interpretation possible
20/10583	1	WS02	1.70	10-12	No interpretation possible
20/10583	1	WS03	0.70	13-15	No interpretation possible
20/10583	1	WS03	1.70	16-18	No interpretation possible
20/10583	1	WS04	0.70	19-21	No interpretation possible
20/10583	1	WS04	1.70	22-24	No interpretation possible
20/10583	1	WS11	0.70	25-27	No interpretation possible
20/10583	1	WS11	1.70	28-30	No interpretation possible
20/10583	1	WS11	2.70	31-33	No interpretation possible
20/10583	1	WS12	0.70	34-36	No interpretation possible
20/10583	1	WS12	1.70	37-39	No interpretation possible
20/10583	1	WS12	2.70	40-42	No interpretation possible
20/10583	1	WS14	0.70	43-45	No interpretation possible
20/10583	1	WS14	1.70	46-48	No interpretation possible
20/10583	1	WS14	2.70	49-51	No interpretation possible
20/10583	1	WS15	0.70	52-54	No interpretation possible
20/10583	1	WS16	0.70	55-57	No interpretation possible
20/10583	1	WS18	0.70	58-60	No interpretation possilbe

Reference: 20/07/9766

Location: The Quater, Citywest, Phase 3
Contact: Diarmaid MagLochlainn

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/10583	1	WS01	0.70	2	12/08/2020	General Description (Bulk Analysis)	Soil/Stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS01	1.70	5	12/08/2020	General Description (Bulk Analysis)	Soil/Stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS02	0.70	8	12/08/2020	General Description (Bulk Analysis)	Soil/Stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS02	1.70	11	12/08/2020	General Description (Bulk Analysis)	soil-stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS03	0.70	14	12/08/2020	General Description (Bulk Analysis)	soil.stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS03	1.70	17	12/08/2020	General Description (Bulk Analysis)	soil.stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS04	0.70	20	12/08/2020	General Description (Bulk Analysis)	Soil/Stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD

Reference: 20/07/9766

Location: The Quater, Citywest, Phase 3
Contact: Diarmaid MagLochlainn

						I	Í
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/10583	1	WS04	0.70	20	12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS04	1.70	23	12/08/2020	General Description (Bulk Analysis)	Soil/Stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
					12/00/2020	ASDESIOS LEVEL OCICENT	IVAL
20/10583	1	WS11	0.70	26	12/08/2020	General Description (Bulk Analysis)	soil.stones
20/10303	'	WOTT	0.70	20			
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS11	1.70	29	12/08/2020	General Description (Bulk Analysis)	soil.stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS11	2.70	32	12/08/2020	General Description (Bulk Analysis)	soil.stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS12	0.70	35	12/08/2020	General Description (Bulk Analysis)	Soil/Stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS12	1.70	38	12/08/2020	General Description (Bulk Analysis)	soil.stones
20/10000	•		1.70	00	12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
						Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
00/40505		MC40	0.70	44	10/00/000	Consest Description (D. V. A. J. 1.1.1	
20/10583	1	WS12	2.70	41	12/08/2020	General Description (Bulk Analysis)	soil.stones
					12/08/2020	Asbestos Fibres	NAD
					12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS14	0.70	44	13/08/2020	General Description (Bulk Analysis)	soil-stones
					13/08/2020	Asbestos Fibres	NAD
					13/08/2020	Asbestos ACM	NAD
					13/08/2020	Asbestos Type	NAD
					13/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS14	1.70	47	12/08/2020	General Description (Bulk Analysis)	soil.stones
					12/08/2020	Asbestos Fibres	NAD
						I.	1

Reference: 20/07/9766

Location:The Quater, Citywest, Phase 3Contact:Diarmaid MagLochlainn

Contact			D	MagLoci			
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/10583	1	WS14	1.70	47	12/08/2020	Asbestos ACM	NAD
					12/08/2020	Asbestos Type	NAD
					12/08/2020	Asbestos Level Screen	NAD
					12/00/2020		
20/10583	1	WS14	2.70	50	13/08/2020	General Description (Bulk Analysis)	soil-stones
					13/08/2020	Asbestos Fibres	NAD
					13/08/2020	Asbestos ACM	NAD
					13/08/2020	Asbestos Type	NAD
					13/08/2020	Asbestos Level Screen	NAD
					10/00/2020		
20/10583	1	WS15	0.70	F2	42/00/2020	Consul Resountion (Bully Analysis)	anii atawa
20/10565	- 1	W313	0.70	53	13/08/2020	General Description (Bulk Analysis)	soil-stones
					13/08/2020	Asbestos Fibres	NAD
					13/08/2020		NAD
					13/08/2020	Asbestos Type	NAD
					13/08/2020	Asbestos Level Screen	NAD
20/10583	1	WS16	0.70	56	13/08/2020	General Description (Bulk Analysis)	Soil/Stones
					13/08/2020	Asbestos Fibres	NAD
					13/08/2020	Asbestos ACM	NAD
					13/08/2020	Asbestos Type	NAD
					13/08/2020		NAD
					13/00/2020	ASDESIOS LEVEI OCICEII	IVAL
00/40500		WC40	0.70		40/00/0000		0.140
20/10583	1	WS18	0.70	59	13/08/2020	General Description (Bulk Analysis)	Soil/Stones
					13/08/2020	Asbestos Fibres	NAD
					13/08/2020	Asbestos ACM	NAD
					13/08/2020	Asbestos Type	NAD
					13/08/2020	Asbestos Level Screen	NAD
						ı	ı

Notification of Deviating Samples

Matrix: Solid

Ground Investigations Ireland Reference: 9766-07-20

Client Name:

Location: The Quater, Citywest, Phase 3

Diarmaid MagLochlainn Contact:

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/10583	1	WS01	0.70	1-3	GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS01	1.70	4-6	GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS02	0.70	7-9	GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS02	1.70	10-12	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS03	0.70	13-15	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS03	1.70	16-18	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS04	0.70	19-21	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS04	1.70	22-24	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS11	0.70	25-27	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS11	1.70	28-30	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS11	2.70	31-33	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS12	0.70	34-36	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS12	1.70	37-39	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS12	2.70	40-42	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS14	0.70	43-45	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS14	1.70	46-48	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS14	2.70	49-51	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS15	0.70	52-54	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS16	0.70	55-57	EPH, GRO, PAH, PCB	Sample holding time exceeded
20/10583	1	WS18	0.70	58-60	EPH, GRO, PAH, PCB	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/10583

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.:

20/10583

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
·	

Test Method No.	Description No. (if Description		ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis	
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS. End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.		Yes		AR	Yes	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Test Method No.	Description No. (if Description (ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis	
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.		No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP				AD	Yes	
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP		Yes		AD	Yes	
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	o. (if Description		MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42 Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid sample undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.		Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Diarmaid MagLochlainn

Date: 28th September, 2020

Your reference: 9766-07-20

Our reference : Test Report 20/12902 Batch 1

Location : The Quarter Citywest Phase 3

Date samples received: 22nd September, 2020

Status: Final report

Issue:

Three samples were received for analysis on 22nd September, 2020 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

irlaumed.

Lucas Halliwell

Project Co-ordinator

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9766-07-20

Location: The Quarter Citywest Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No: 20/12902

Report : Solid

COC No / misc Containers T T T Sample Date 18/09/2020 18/09/2020 18/09/2020 Sample Type Soil Soil Soil Batch Number 1 1 1 1	Inched notes for all and acronyms Method No. g/I TM38/PM20
Depth 3.00 7.00 1.00 Please see atta abbreviations	and acronyms Method No.
COC No / misc Containers T T T Sample Date 18/09/2020 18/09/2020 18/09/2020 Sample Type Soil Soil Soil Batch Number 1 1 1 1	and acronyms Method No.
COC No / misc Containers T T T Sample Date 18/09/2020 18/09/2020 18/09/2020 Sample Type Soil Soil Soil Batch Number 1 1 1 1	and acronyms Method No.
Containers T T T T Sample Date 18/09/2020 18/09/2020 18/09/2020 Sample Type Soil Soil Soil Soil LOD/LOR U	No.
Sample Date 18/09/2020 18/09/2020 18/09/2020 Sample Type Soil Soil Soil	No.
Sample Type Soil Soil Soil Batch Number 1 1 1 1 LOD/LOR U	No.
Batch Number 1 1 1 1 LOD/LOR U	No.
Date of Receipt 22/09/2020 22/09/2020 22/09/2020	No.
- 1100 51 1100 12020 22100 12020 22100 12020	g/I TM38/PM20
pH# 8.43 8.49 8.74 <0.01 pH	units TM73/PM11

Reference: 9766-07-20

Location: The Quarter Citywest Phase 3

Contact: Diarmaid MagLochlainn

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason			
	No deviating sample report results for job 20/12902								

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/12902

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/12902

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
	· · · · · · · · · · · · · · · · · · ·

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

APPENDIX 9 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

The Quarter Citywest Cooldown Commons

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
BH01	14/10/2020	9.25	2.56	109.24m OD
BH02	14/10/2020	9.28	1.27	110.7m OD
BH08	14/10/2020			No data gathered -obstruction
BH10	14/10/2020			No data gathered -obstruction
BH16	14/10/2020	9.44	1.77	110.22m OD
BH17	14/10/2020	9.50	2.68	109.32m OD
BH01	20/10/2020	10.05	2.60	109.2m OD
BH02	20/10/2020	10.10	1.20	110.85m OD
BH08	20/10/2020			No data gathered -obstruction
BH10	20/10/2020			No data gathered -obstruction
BH17	20/10/2020	10.22	2.60	109.4m OD
BH01	21/10/2020	9.00	2.60	109.2m OD
BH02	21/10/2020	9.05	1.30	110.7m OD
BH08	21/10/2020	9.10	7.70	108.9m OD
BH10	21/10/2020	9.15	4.90	109.3m OD
BH17	21/10/2020	9.20	2.60	109.0m OD